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Abstract  

Neural stem cells can be isolated from the adult 
mammalian brain throughout the entire lifetime of an 
organism, including humans. Unfortunately, no 
unique molecular marker could be identified 
expressed by all types of neural stem and 
progenitor cells in every developmental stage. 
Genomic and proteomic screening approaches 
suggest a functional definition of adult stem cells by 
their molecular inventory. These include (i) the 
responsiveness to growth factors, (ii) the reuse of 
developmental signaling cascades in adult 
progenitors, (iii) the interaction with molecules of the 
extracellular matrix, (iv) the expression of genes 
regulating transcription and translation, (v) 
mechanisms for controlling cell number, and (vi) the 
protection against cellular stress, such as hypoxia, 
or DNA damage.  
Keywords: Neural stem and progenitor cell, 
proteomics, genomics, molecular marker, 
differentiation. 

1. Introduction: Stem and progenitor cells in 
the brain 

In the last 10 to 15 years, the view on the 
regenerative potential of the brain changed 
dramatically with the characterization of stem and 
progenitor cells residing in the adult brain 
throughout the entire lifetime of the mammalian 
organism, including humans.  

Neural stem and progenitor cells have been 
characterized by their developmental potential 
which is the ability to produce progeny with is on the 
on hand more restricted with regard to the multitude 
of cells they can produce, but on the other hand 
gains functionality by differentiation [1-3]. In the 
current concept, brain cells are all derived from 
several divisions of (i) the totipotent zygote, which 
has the potential to give rise to all body cells, via (ii) 
the pluripotent embryonic stem cells, which cannot 
constitute the whole body an more, but it can 
differentiate into all varieties of cells, (iii) the 

multipotent stem cell, which persists in the organism 
and gives rise to the cells of the same germinal 
layer, (iv) progenitor cells of the respective tissue, 
which are restricted to specific functional cells of the 
respective organ, and finally, (v) the differentiated 
tissue-specific cells, which are terminally 
differentiated and can exert the specific cellular 
tasks. With regard to the brain, these are neurons, 
astrocytes, and oligodendrocytes, which are thought 
to originate all from a common neural progenitor cell  
(Figure 1) [4-8]. 
 

 
 
Figure 1. Hierarchical concept of the biological origin of 
neural stem cells [9]. All brain cells are derived from 
common precursor cells, which are characterized by their 
proliferation and differentiation potential (Copyright © 
Nova Science Publishers, Inc., Hauppauge, NY, USA. 
Reprinted with permission.) 



eeJJBBiioo                                                                                                                                                                  Electronic  Journal of Biology, 2008. Vol. 4(2): 43-46 

Special Issue 

2. The search for common molecular 
markers of neural stem cells 

Whereas hematopoietic stem cells (HSCs) can be 
defined by the expression of a specific set of 
molecular markers, such as the typical combination 
of CD34

+
, CD59

+
, Thy1/CD90

+
,CD38

lo/-
, C-

kit/CD117
-/lo

, lin
- 
for human hematopoietic stem cells 

[10-12]. However, also HSCs may be present in the 
bone marrow without this typical phenotype.  

Unfortunately, no such definition has been found 
for neural stem cells [6, 13, 14], thus the definition 
of these cells relays on the functional properties 
self-renewal and multipotency [5, 15]. Although 
presumptive markers have been proposed 
(reviewed in [16]), none of them comprehends all 
subtypes of neural stem cells at any given point of 
time or region in development (Figure 2). 

 

 
 

Figure 2. Pseudoclustering of molecular markers 
expressed in neural stem cells and their progeny. There 
are no unique proteins expressed, therefore, a definition 
solely based on these markers is not possible. (blue 
boxes: expression confirmed, light-blue boxes: expression 
disputed, red box: expression unclear) (GRP, glial-
restricted precursors) (Modified from [9]). 

 

In microarray-based screening approaches, specific 
gene expression patterns have been proposed for 
the differentiation stages of neural stem cells [17, 
18]. Genomic approaches also defined the 
overlapping set of expressed genes in several types 
of stem cells, including neural stem cells [19-22].  
 

3. Definiton of adult stem cells by common 
functional properties  

With regard to proteomic analyses, proteomic 
inventories of neural stem cells have been created 
using two-dimensional gel electrophoresis [23, 24]. 
Additionally, the events underlying cellular 
differentiation in vitro have been studied in human 
fetal cortex [25], rodent subventricular zone [26-28], 
hippocampus [23, 29], olfactory bulb [30], and 
cerebellum [31, 32], as well as in neural stem cell-
like cell lines [33, 34] and the porcine brain [35].  

Comparing the protein expression patterns, no 
single characteristic molecule could be identified, 
but the functional definition, as specified for the 
genomic approaches, is supported (Figure 3) [9, 36]. 
In the light of these results, adult stem cells have all 
the same prerequisites, but the exact molecular 
composition dependent on cell and tissue-specific 
factors. These common prerequisites involve: 

(i) The responsiveness to growth factors such as 
EGF, FGF-2, EPO, G-CSF, VEGF, LIF, TGF-ß, 
NGF, as well as to neurotransmitters such as 
glutamate, GABA, or NO. Again, not all neural stem 
and progenitor cells react to each of these 
molecules, but, for example, the expression of 
VEGF receptors in the rodent brain is highest in the 
zones of spontaneous neurogenesis, i. e. 
hippocampus, subventricular zone, and olfactory 
bulb [37]. A prerequisite to growth factor 
responsiveness is the expression of specific 
membrane-spanning receptors, which are able to 
initiate intracellular signaling cascades. 

(ii) The reuse of developmental signaling 
cascades in adult progenitors. Nearly 20 such 
pathways have been identified in neural stem cells, 
including Shh, Pax, Hox, Wnt, Notch/Delta, TGF-ß, 
NFkappaB, or JAK/STAT [38]. Interestingly, the 
activation of these pathways in the adult may have 
different functions compared to the embryonic 
developmental pathways. 

(iii) The interaction with molecules of the 
extracellular matrix. During differentiation and 
maturation, stem cells migrate, extend processes, 
attach to the extracellular matrix, and adhere to 
nearby microenvironmental surfaces. Therefore, 
they require the expression of motor proteins, lytic 
enzymes, and enzymes for providing metabolic 
energy. Several extracellular matrix proteins 
mediating cell-cell interaction have been identified in 
neural stem cells, such as integrins and cadherins. 

(iv) The expression of genes regulating 
transcription and translation. Although no specific 
proteins in the categories of transcription factors, 
DNA or RNA binding proteins, and chromatin 
remodeling enzymes can be named, stem cells 
need these molecules to change the cellular 
phenotype from its undifferentiated form to the new 
functional requirements of a differentiated stem cell. 

(v) Mechanisms for controlling cell number. 
Mainly three processes regulate stem numbers: 
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Mitosis (proliferation), differentiation, and apoptosis 
(programmed cell death). An essential process is 
also asymmetric cell division, which regulates the 
stem cell pool. In this context, typical proteins 
regulating cell number are caspases and cyclins. 

(vi) The protection against cellular stress, which 
involves metabolic deprivation, NO and O2 toxicity, 
DNA damage, mechanical distortion, hypo- and 
hyperthermia, or hypoxia. Proteins in this category 
comprehend molecular chaperones, NO detoxifying 
enzymes, and components of the proteasome. 
 

 
 

Figure 3. Novel definition of adult neural stem cells by 
combining molecular marker expression and functional 
aspects (Modified from [36]). 
 

Of note, although adult neural stem cells express 
these molecules, different proteins can be found in 
the cells. This hetereogeneity in the protein 
expression pattern is supported by protein 
expression studies comparing neural stem and 
progenitor cells from different brain regions [30, 39, 
40]. 

4. Conclusions 

Although it is not possible to identify a single 
molecular marker expressed by all types of neural 
stem cells at any given time in development and 
adulthood, nor a specific set of expressed markers 
fulfilling these requirements, it is possible to define 
neural stem and progenitor cells by common 
functional properties. A major advance in the field 
was the introduction of functional genomic / 
proteomic approaches, mainly based on two-
dimensional gel electrophoresis for protein 
separation and mass spectrometry for protein 
identification. 
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