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Abstract

Rabies remains an important human health and 
wildlife management concern worldwide. Currently, 
there is significant underreporting of human deaths 
from rabies in many parts of the world. Concerning 
foxes in Europe, the proportion of all cases that are 
observed is likely to be as low as 2−10%. Consequently 
predictive models have been developed to estimate 
the mortality attributable to rabies. When rabies 
penetrates a new area, there is a peak in reported 
cases among foxes. These pulse like events causing 
the spread of rabies, often due to migration, mating 
and other seasonal behaviors are often absent from a 
rabies model. We present a model which modifies an 
existing continuous rabies model with the addition of 
a discrete kick via the Dirac distribution. Furthermore 
noting the observed complexities in the literature 
and the data we study the level of complexity of the 
presented model and use an algorithm to demonstrate 
the existence of chaos via Taylor expansions and 
curve fitting for the stable and unstable manifold of a 
fixed point at the origin.
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1. Introduction

Rabies remains an important human health and 
wildlife management concern worldwide. The 
presence of rabies in an area exacerbates the 
uncertainty of conserving rare and threatened 
mammals [1-15]. The disease is transmitted through 
the saliva of infected animals and affects the central 
nervous system. All mammals are thought to be 
susceptible to this disease and throughout human 
history it has been one of the most feared of all 
infectious diseases [4].

Underreporting of human deaths from rabies in 
many parts of the world is significant [1]. To address 
problems such as properly estimating the impact 
of the disease and eliminating it, The World Health 
Organization’s (WHO) Expert Advisory Panel on 
Rabies has partnered with entities such as the 
Bill and Melinda Gates Foundation, the Global 
Alliance for Rabies Control and the Partnership for 
Rabies Prevention. Those joint efforts have begun 

to break the cycle of rabies neglect, and rabies is 
becoming recognized as a priority for investment 
[1]. Consequently, methods have been developed 
to estimate the mortality attributable to rabies. In 
particular predictive models have been investigated 
[1]. Modeling offers a relatively inexpensive, way 
to examine what factors affect rabies transmission 
as well as management and economics [15]. For 
instance, modeling techniques have resulted in a 
revised estimate of the burden of rabies in Africa and 
Asia [1]. As mentioned, in addition to humans, all 
mammals may carry the rabies virus. Foxes represent 
one of the most commonly infected mammals. In the 
United States and Europe, the proportion of rabies 
observed in foxes is likely to be as low as 2−10% 
of the total cases [5,8]. Beyond this the modeling 
of rabies involves many complex interactions which 
depend on both space and time dependent aspects 
demonstrating the need for dynamic models.

Dispersal and competition for fox territories results 
in an increased chance of encounters in late winter. 
Also vixen tend to peak in their number of interactions 
during the summer due to the physiological 
strain of reproduction. Migration of juvenile foxes, 
usually in the fall, tends to influence regions of low 
population density since dispersal distances tend 
to correlate negatively with population density [8]. 
If we consider the effects of these interactions we 
note the observation of interesting dynamics. For 
instance epidemic cycles of increasing amplitude 
were described in where each time the disease 
became epidemic the proportion of infections was 
increasingly worse [4]. Also in Russia, there are 
different rabies cycles with foxes and dogs in the 
same area at the same time [8]. A novel attempt 
to model fox rabies used a system of Ordinary 
Differential Equations (ODE’s) where most prior 
models were computer simulations and statistical 
models. The model makes an additional contribution 
by allowing population size to be dynamic. As noted 
there are times during the year where contact rates 
are higher, such as when juvenile foxes disperse, 
or when a neighboring community practices rabies 
control via culling thereby disrupting the fox’s social 
structure [4]. Consequently, over a very small time 
period there may be an increase in the number of 
infected individuals of a population.
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1.1 Migration

The details of the ODE model in will be explored later 
on; however, this model does not consider migration [4].

Wildlife rabies emerged in Europe after dog rabies 
was eliminated, the new primary host being the red 
fox (V. vulpes) [8]. Coming from the east, fox rabies 
spread inexorably across the continent within a few 
decades. By the mid-1980s, large parts of central 
and western Europe were affected. The westward 
expansion came to a halt in areas such as France 
and northern Italy, where foxes were treated with oral 
rabies vaccine. Infected foxes are responsible for 
maintaining the rabies virus within the fox population 
and also for transmission to other wildlife species and 
domestic animals. In affected areas, rabies is detected 
in a wide variety of species at different frequencies. 
To have an idea of what the rabies population 
dynamics look like, consider Figure 1 below. Here 
the data presented is from and is comprised of all 
mammalian species in their database [12]. In Figure 
1 the dynamics are dominated by the observed 
infected red foxes. Recall though, as previously 
mentioned, that the observations may only represent 
2−10% of the total number of red foxes. The data 
from many countries in Eastern and Western Europe 

is presented in, however as commonly noted; the 
Ukraine and the Russian Federation provide a 
reservoir for spreading the disease to other countries 
[12]. The countries Belarus and Romania are also 
shown in Figure 1 to demonstrate the dynamics of 
nearby countries.

Besides the dynamics presented above, there is also 
a variety of dynamics present within subpopulations. 
For instance observed cases within the human 
population present the dynamics in Figure 2.

Moving further from the Ukraine and the Russian 
Federation, we see that Western Europe is mostly 
free from rabies [1,12]. However, they are not free 
from the threat. Since fox rabies has been controlled 
in Western Europe, the costs for oral vaccination 
have been substantially reduced but other European 
countries now striving to eliminate fox rabies are 
incurring high costs. Recent incursions into Italy, 
although now under control, required substantial 
financial commitments, and costs may escalate 
elsewhere, given the threat of emergence in 
countries such as Greece. The cost of setting up a 
protective barrier along the entire eastern border of 
the European Union to prevent such incursions is 
estimated to be over 6 million US dollars per year [8].
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Figure 1. Number of observed cases on a yearly basis over all mammalian species. Data taken from [12].
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Consequently understanding the dynamics present 
in Eastern Europe can be of value to Western 
Europe as well, allowing better and cheaper control 
strategies, such as mass vaccination which to date 
has been the most effective means of control [1].

The data from along with the mentioned space time 
interaction dependencies indicate that migration has 
pulse action (Figures 1 and 2) [12]. We will start with 
the previously described ODE given in and modify 
it by allowing a periodic influx of infected individuals 
modeled as a pulse [4].

2. Methods

In section 2.1 it was noted that, for foxes with 
dominate the spread of rabies, factors such as 
juvenile migration, seasonal mating and control 
procedures among countries affect rabies dynamics. 
These factors do have seasonality however the data 
presented in Figures 1 and 2 indicates pulse like 
features, as well. This has encouraged us to model 
these pulses with a discrete kick. In particular, we 
consider modifications to the model presented in as 
given below [4].

2.1 ODE

dX/dt=rX-ϒXN-βXY 	  (1)

dI/dt=βXY- (σ+b+ϒN) I	 (1)

dY/dt=σI- (α+b+ϒN) Y	  (1)

•	 Number of Susceptible: X

•	 Number of Latent: I

•	 Number of Infected: Y

•	 Death Rate: b

•	 Population Growth Rate: a

•	 Latency Period: 1/σ

•	 Death Rate of rabid foxes: α

•	 Rabies Transmission coefficient: β

•	 Self-competition term related to carrying 
capacity: γ

•	 Immigration plus births - Emigration and 
deaths of susceptible: r

2.2 Adding discrete kicks to an ODE

As already discussed, this model should include 
some sort of temporal forcing, preferably as a pulse. 
We accomplish this by modifying equation 1 above 
as follows:

dX/dt=rX-ϒXN-βXY 	 (2)

dI/dt=βXY- (σ+b+ϒN) I+ 0n

∞

=
∑  hXδ(t-nK)	 (2)

dY/dt=σI- (α+b+ϒN) Y	 (2)

•	 Dirac distribution: δ

•	 Time of first instance where infected foxes 
successfully enter population: k

Dirac distribution δ, defined by the property that

	 ( ) ( ) ( )0f t t dt fδ
∞

−∞

=∫ 			    (3)

for all continuous functions f defined on R. Equivalently 
δ may be defined as a probability measure that takes 
the value of 1 for all sets containing the origin and 0 
otherwise [7,11,14].

We now show how to integrate (2), however more 
details can be found in [7]. Let Ia represent the number 
of latents just after the mth kick and let Ib represent 
the number of latents just before the mth kick. Thus 
integrating dI/dt we obtain
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Or equivalently we may write
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Because (βXY − (σ + b + γN)I) is bounded on    

( ) we have	
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For 0<ò <k, the only non-zero term in the summation 
is when m=n. Hence, we have
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which by (6) becomes
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Figure 2. Number of observed cases of rabies in humans 
on a yearly basis. Data taken from [12].
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Applying the definition of δ on the right (noting that 
X is continuous at t=mk) and integrating as usual on 
the left, which does not depend on ε, we have

               a b bI I hX= +  				     (9)

In Figure 1 there is a change from few or no to 
infected animals to populations of considerable 
size, in the Ukraine. This indicates we are working 
with introductory level events, particularly of a pulse 
nature which is modeled by a discrete kick through the 
Dirac distribution in equation 2. Ideally we consider 
introductions from each of the classes of the outside 
environment into the population of study. However, 
importance in place on the latent class which will 
become infected and possibly spread the disease 
rapidly through the study population. We could have 
modeled the pulse into the infected class; however, 
rabies has a high death rate. Hence we have worked 
under the assumption that introduction of the disease 
through migration is more likely through the latent 
class.

We consider the pulse action, via the Dirac distribution 
to be a linear function of the susceptible. Specifically, 
in the standard epidemic model, the susceptible 
population determines whether a disease will become 
an epidemic or die out [10]. The linearity, in the kick 
term, is to begin simple and avoid over-fitting. A more 
complex kick term might fit the current data better; 
however it would also assume more knowledge 
and may result in increased error when looking at 
future data. Note that the kick term is a function of 
the number of susceptible in the population of study 
when it should be a function of the susceptible in the 
surrounding populations. This is because we are 
making an assumption of homogeneity. More precisely 
we are assuming that the proportion of susceptible 
in the surrounding populations is proportional to the 
number of susceptible in the populations of study. 
It should be noted that by susceptible, latent and 
infected we are primarily speaking of foxes in the 
model, however, we may include any mammal.

2.3 Model dynamics

To study the dynamics presented in equation 2 we 
consider the resulting map at the time of the kick. 
In particular we integrate equation 1 to the time of a 
kick and while fixing the values of X and Y, at the said 
time, we apply equation 9 to the value of I. We may 
write this map as the composition G=L°XT  where L is 
the kick map and XT is the flow of the ODE at the kick 
time. Of course since we cannot integrate equation 1 
explicitly, the stroboscopic map G does not have an 
explicit representation. Consequently the dynamics 
must be studied implicitly. We should also note that 
in this case G is acting as a hybrid map combining a 
discrete and a continuous system.

When modeling any system, whether it is to test 
a hypothesis where we construct a model before 
fitting it to data, or an observational approach where 
we construct a model for a particular set of data, 

we need classes of models which can correctly 
describe the data. For instance SEIR models, 
which are a generalization of the model type used 
in [4], are popular for modeling epidemics. Standard 
SEIR models, however, typically do not exhibit the 
complex behavior as is seen in data sets such the 
1960’s England and Whales measles epidemic. 
Consequently, before proposing a class of models 
we would like to know if a particular class of models 
can exhibit the necessary dynamics needed to study 
a system.

A plot representing the dynamics for the map G, 
with parameters in Table 1, is displayed in Figure 3 
below. The reasons for picking these parameters are 
that rabies seems to exhibit complex dynamics, as 
discussed in the introduction. Also, from Figures 1 
and 2, the dynamics appear to exhibit complexity as 
well. Consequently, we would like to see if the model 
presented in equation 2 exhibits complexity, and 
these parameters are a good place to start.

Proceeding with this investigation note that the 
map G has a fixed point at X=I=Y=0. If we calculate 
the Jacobian of the map about this saddle point 
numerically we find it has a one dimensional unstable 
manifold and a two dimensional stable manifold, 
making it hyperbolic. The computed eigenvalues 
where approximately 5226, 1 × 10−5 and 1.4 × 10−8 
however for calculations two-hundred decimal 
places of precision were used. It may be helpful 
to note that the ratio of the unstable to the stable 
eigenvalues were about 400 billion and 500 million 
respectively. Noting the eigenvalues is important 
not just in terms of identifying a saddle point but 
the differences in magnitudes indicate how costly a 
mistake with integration can. Systems such as this 
are considered stiff and the usual approach is to use 
integration methods which are A-Stable. The basic 

β σ b r ϒ h k α
65 21 1 10 10 7.1 23/28 13

Table 1. Parameter values for used of the model in [2].
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Figure 3. Plot of stroboscopic map defined in (2) with 
parameters defined at this beginning of this section.
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idea of A-Stability is to explore the properties of an 
integration algorithm for a linear model often called 
the “toy model.” If the region of convergence to 0 for 
the algorithm is sufficiently large for the product of 
the step size and the eigenvalue of the toy model, 
the algorithm is said to be A-Stable. Unfortunately, 
all A-Stable methods are implicit meaning integration 
involves solving systems of nonlinear equations. 
Taylor Integration which was used in this problem 
is an explicit method that is asymptotically A-Stable, 
however, which suffices for our purposes (Table 1 
and Figure 3) [13].

2.4 Asymptotic computation of the unstable 
manifold

The goal for our model is to show the existence of 
a chaotic set. We do this by showing the transverse 
intersection of the stable and unstable manifolds for 
a fixed point, which results in the map represented by 
our model being conjugate to a horseshoe map and 
hence containing a chaotic set [9].

Since the maps we use in our models are implicit 
we take a numerical approach to estimate the stable 
and unstable manifolds. We begin by considering an 
analytic map Q: Rn → Rn and a saddle point p0. The 
stable manifold theorem guarantees the existence 
of the local invariant stable and unstable analytic 
manifolds given by S and U respectively which are 
tangent to the stable and unstable spaces for DQ 
(p0) at the said point and of the same dimension. The 
global stable and unstable sets defined respectively 
below.

( )0
0

(S)s n

n

W p Q−

>

=

( )0
 0

(U)u n

n

W p Q
≥

=

We will discuss the procedure for estimating the 
unstable manifold; the procedure for the stable 
manifold is similar. As mentioned above suppose 
that the dimension of the unstable manifold is given 
by k ≤ n. Because the manifold is analytic, it has 
a Taylor expansion about the point p0. So we may 
parameterize Wu by Taylor expanding about a point 
a ∈ Rk as below.

and	

where

α=(α1,α2,...,αk)

|α|=α1+α2+...+αk

x=(x1,x2,...,xk)

1 2( , ,..., )kx x x xα α1 α2 ακ=
1 2 kαα αα∂ = ∂ ∂ …∂

 
i

i
i i

xi

δδ
δ

α
α=

Using the above expansion about a ∈ Rk, with 
( ) 0a pµφ =  we may take a linear approximation and 

write

( ) ( ) ( )( )2
0    O 1x p x a xµ µφ φ= + ∂ − + −

Since we know that φµ is locally tangent to the 
unstable Eigen space of DQ (p0), we may write

( ) ( ) ( )( )2
0      x p W x a O x aµφ = + − + − 	              (10)

where W=[W1,W2,..Wk] is a matrix of linearly 
independent columns and Wi is an unstable 
eigenvector of DQ (Su).

Providing a suitable expansion for the unstable 
manifold would mean knowledge of derivatives 
beyond the first order which we do not have. 
Consequently we will use the following property. Let 
P0=φµ (x0) ∈ Wu (p0). Then we have that for any m0 ∈ 
N and λ and eigenvalue of DQ (p0).

( )0 0
0 , 0lim m m

NN
P Q xµοφ λ −

→∞
= 		                 (11)

However convergence is faster when λ−m0x0 << 1, 
which is the point we will exploit [6]. If Q were a linear 
map then ϕµ would just be a matrix consisting of the 
unstable eigenvectors of DQ (p0) and we could then 
think of this as the eigenvalue property. Then using a 
linearization argument, as suggested here, or Normal 
Form theory we can show that this property holds 
locally even when Q is not linear. The property can 
then be extended as a global property of the unstable 
manifold. To see why this property is useful note that 
λ gives us information about how quickly points move 
along the unstable manifold and since λ=1 represents 
a non-hyperbolic case we would like to stay as far 
away from this as possible. Consequently we may be 
better off looking at the map Qm0 and the eigenvalues 
λm0 if they are more hyperbolic. However, since we 
are trying to estimate µφ

 this is just an asymptotic 
approximation as ,N µφ  → µφ .

Specifically we will start with a small neighborhood 
B0 of points about 0 ∈ Rk. We can then approximate 
where on the unstable manifold these points should 
be mapped using equation 11 above writing

	
00 , 00, 0 0(p ) { ( x ) omu u mo

N mW W Q x Bo µφ −λ ∀ ∈≅ = }      (12)

We can compute an initial linear approximation for 
0,µφ  and 

0,N mW µ  using equation 10 then gets a better 
approximation of the points for the unstable manifold 
using 11. We then fit 

0,N mW µ  using least squares 
regression by a polynomial of the desired degree, 
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say N. Since the Taylor expansion of µφ  is unique 
we expect that this regression will approximate , N µφ
. Using our estimate of we may use equations 10 
and 11 to get a better estimate of 

0,N mW µ . We repeat 
this process to show convergence of the polynomial 
coefficients for , N µφ .

3. Results

We calculated parameterizations for the unstable 
and stable manifolds by applying the algorithm in the 
previous section to our map. Error was calculated for 

the stable manifold by integrating estimated points 
forward in time to see if the points converged to the 
origin. For the unstable manifold points were integrated 
backwards in time to see if they converged to as well 
to the origin, which is the saddle point about which we 
are studying the map. The error for the stable manifold 
after two iterations was 6 decimals and 40 decimal 
places for the unstable manifold after 10 iterations. 
For the unstable manifold the change in regression 
coefficients with respect to the L2 norm is shown 
in Figure 4. Noting this is only a Cauchy argument, 
however, there does appear to be convergence. Only 
two iterations were performed for the stable manifold. 
Integrating backwards in time was a computationally 
difficult task. For the current results 200 terms were 
needed for Taylor integration, not expansion of the 
manifolds which also uses Taylor’s theorem 2. Using 
less terms results in nonsensical output or the system 
blowing up. Recently work has been done to speed 
this up using cluster based computing. For Taylor 
expansions for the actual manifolds only 30 terms were 
used, for the stable manifold, do to time constraints 
resulting from computational difficulty and 60 for the 
unstable manifold (Figure 4).

The output of the algorithm can be viewed in Figure 
5. The upper left and right show estimations of the 
stable and unstable manifolds respectively. The 
bottom center demonstrates two intersections of 
the stable and unstable manifold. One intersection 
occurs at the origin since that is the saddle point. 
A second intersection occurs by taking a point on 
the unstable manifold and iterating forward in time. 
Their intersection which at least from the numerical 
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0.01

2          4                  6     8          10

Figure 4. Considering polynomial fits for the unstable 
manifold with 200 terms, the above figure shows the 
change in the coefficients versus algorithm iteration under 
the L2 norm.

Figure 5. Stable and unstable manifolds for the fixed point (0,0,0). Upper lefts is an estimation of the stable manifold. Upper right 
is an estimation of unstable manifold. Bottom center is an overlay showing the intersection of the stable and unstable manifolds.
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approximations appear to be transverse indicating 
conjugacy to a horseshoe map and hence a chaotic 
set. Thus addressing the question if the model from 
[4] can be modified to handle the more complex 
dynamics of rabies models (Figure 5).

4. Discussion

Rabies remains an important problem worldwide. In 
Western Europe the disease is under control at both 
the animal and human level, however, maintaining the 
status quo is expensive [1]. In Eastern Europe such 
as the Balkans (see Appendix A) the Ukraine and the 
Russian Federation(Figures 1 and 2) we see that the 
human cases are relatively under control, while there 
is still a considerable degree of infection for animal 
populations, though both are underreported [1]. Still 
in other parts of the world, such as Africa and parts 
of Asia neither the human or animal populations are 
under control [3].

The underreporting is partially why we need modeling. 
As discussed in the rabies observations only tell 
us severity relative to other animal populations [3]. 
Concerning the total numbers of susceptibilities, 
latent or infected, for any animal or human group 
we have often have limited information. Rabies, 
however, spreads between animal species so by 
modeling we can specify how this information is 
related, and update the models as new information 
becomes available. At very least if we cannot give 
exact numbers for populations we may be able to 
specify the qualitative dynamics such as cycles or 
other attractors which can helps us control the spread 
of this dangerous disease.

As pointed out in the introduction rabies is both a 
serious problem and one known to exhibit complex 
dynamics. In a model was developed for the rabies 
virus and a variable population however the model 
leaves out migration events that are known to be 
important to rabies dynamics [4]. For instance, 
dispersion of juveniles, increased contact during 
mating season, etc. To account for what from the 
data seem to be impulse events and likely migration 
a Dirac distribution was used to introduce a kick 
and it was assumed to be a function of the number 
of susceptible in the surrounding community. The 
assumption is made that the number of susceptible in 
the community being modeled is proportional to the 
number of susceptible in surrounding communities. 
In cases where this assumption is not reasonable, 
further considerations would have to be made. Also 
as noted earlier, it is primarily foxes that are being 
modeled since they are primarily responsible for 
spreading and maintaining the disease. Starting 
with a simple pulse to avoid over fitting we observe 
seemingly complex dynamics [2]. As mentioned 
earlier, knowing the range of dynamics of a model 
is important biologically. If the known dynamics of 
a biological system are known to be more complex 
than those attainable by that model, then the model 
should not be used. To study the model’s dynamics, 

the algorithm in the previous section was used to 
estimate the stable and unstable manifolds of a 
fixed point and look at their intersection via curve 
fitting and Taylor expansion of the manifolds. After 
running the algorithm the estimations appear to 
have a transverse intersection. Unfortunately due to 
stiffness of the ODE the accuracy of the manifolds 
was only computed to 6 and 40 decimal places for 
the stable and unstable manifolds respectively. The 
computation of this intersection reveals chaos and 
is evidence that this model can mimic the complex 
dynamics found in nature.

With regards to the algorithm, the accuracy was 
restricted due to computational limitations. The 
ratio of the eigenvalues for the unstable to the 
stable manifolds had an order as high as 400 billion 
meaning slight errors in the computations can blow 
up very quickly. This placed restraints on the number 
of times the algorithm for estimating the manifolds 
could be used. For the unstable manifold expansion 
(not Taylor Integration) 60 terms were used and for 
the stable manifold while 30 were used for the stable 
manifold. The latter case being two dimensional. 
Since the main difficulty in the calculation stems from 
integration of the underlying ODE one option would 
be to use an integrator other than Taylor’s method 
with better stability properties or one that takes 
advantage of resources such as parallel integrators.

For this model to be of use we would like to apply it 
to the problem is Eastern Europe. However before 
doing this we may modify the model to include 
interactions between different species.

Consequently the data from 1977 to 2016 is presented 
below and shows control of the disease in the human 
population however demonstrates epidemics for 
animals, in particular with foxes (Table 2).

Country Human Domestic Wild Life Fox
Albania 0 11 9 8

Bosnia - 
Hercegovina

0 132 626 605

Bulgaria 1 84 353 146
Croatia 0 1014 12494 12262
Greece 0 8 40 40

Italy 2 20 499 442
Kosovo 0 0 0 0

Macedonia 0 1 8 4
Montenegro 0 32 173 163

Romania 3 1819 4349 4131
Slovenia 0 252 5137 4850
Turkey 1 8686 587 438

Table 2. Reported rabies infections for Balkan states, 
where data was obtainable, and Italy, from 1977-2016. 
Domestic animals include dogs, stray dogs, cats, cattle, 
equine, goats, sheep, pigs and other domestic animals. 
wildlife include fox, raccoon dog, wolf, raccoon, badger, 
marten, other mustelids, other carnivores, wild boar, roe 
deer, red deer and fallow deer, other wildlife [12].
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