e]Bio

Electronic Journal of Biology. 2016, Vol.12(4): 402-409

Implicit Fox Rabies model with an Asymptotic Computation of
Chaos

Ippolito A Stephen'*, Naudot Vincent?

1 American Seed Trade Association (ASTA), USA;
2 Florida Atlantic University (FAU), USA.

*Corresponding author. Tel: 9546505817; Fax: 9546505817; E-mail: Stephen.lppolito@ars.usda.gov
Citation: Stephen IA, Vincent N. Implicit Fox Rabies model with an Asymptotic Computation of Chaos. Electronic J Biol, 12:4

Received: May 13, 2016; Accepted: August 08, 2016; Published: August 15, 2016

Research Article

Abstract

Rabies remains an important human health and
wildlife management concern worldwide. Currently,
there is significant underreporting of human deaths
from rabies in many parts of the world. Concerning
foxes in Europe, the proportion of all cases that are
observedislikely to be aslow as 2-10%. Consequently
predictive models have been developed to estimate
the mortality attributable to rabies. When rabies
penetrates a new area, there is a peak in reported
cases among foxes. These pulse like events causing
the spread of rabies, often due to migration, mating
and other seasonal behaviors are often absent from a
rabies model. We present a model which modifies an
existing continuous rabies model with the addition of
a discrete kick via the Dirac distribution. Furthermore
noting the observed complexities in the literature
and the data we study the level of complexity of the
presented model and use an algorithm to demonstrate
the existence of chaos via Taylor expansions and
curve fitting for the stable and unstable manifold of a
fixed point at the origin.

Keywords: Dynamical systems; Rabies; Chaos.
1. Introduction

Rabies remains an important human health and
wildlife management concern worldwide. The
presence of rabies in an area exacerbates the
uncertainty of conserving rare and threatened
mammals [1-15]. The disease is transmitted through
the saliva of infected animals and affects the central
nervous system. All mammals are thought to be
susceptible to this disease and throughout human
history it has been one of the most feared of all
infectious diseases [4].

Underreporting of human deaths from rabies in
many parts of the world is significant [1]. To address
problems such as properly estimating the impact
of the disease and eliminating it, The World Health
Organization’s (WHOQO) Expert Advisory Panel on
Rabies has partnered with entities such as the
Bill and Melinda Gates Foundation, the Global
Alliance for Rabies Control and the Partnership for
Rabies Prevention. Those joint efforts have begun
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to break the cycle of rabies neglect, and rabies is
becoming recognized as a priority for investment
[1]. Consequently, methods have been developed
to estimate the mortality attributable to rabies. In
particular predictive models have been investigated
[1]. Modeling offers a relatively inexpensive, way
to examine what factors affect rabies transmission
as well as management and economics [15]. For
instance, modeling techniques have resulted in a
revised estimate of the burden of rabies in Africa and
Asia [1]. As mentioned, in addition to humans, all
mammals may carry the rabies virus. Foxes represent
one of the most commonly infected mammals. In the
United States and Europe, the proportion of rabies
observed in foxes is likely to be as low as 2-10%
of the total cases [5,8]. Beyond this the modeling
of rabies involves many complex interactions which
depend on both space and time dependent aspects
demonstrating the need for dynamic models.

Dispersal and competition for fox territories results
in an increased chance of encounters in late winter.
Also vixen tend to peak in their number of interactions
during the summer due to the physiological
strain of reproduction. Migration of juvenile foxes,
usually in the fall, tends to influence regions of low
population density since dispersal distances tend
to correlate negatively with population density [8].
If we consider the effects of these interactions we
note the observation of interesting dynamics. For
instance epidemic cycles of increasing amplitude
were described in where each time the disease
became epidemic the proportion of infections was
increasingly worse [4]. Also in Russia, there are
different rabies cycles with foxes and dogs in the
same area at the same time [8]. A novel attempt
to model fox rabies used a system of Ordinary
Differential Equations (ODE’s) where most prior
models were computer simulations and statistical
models. The model makes an additional contribution
by allowing population size to be dynamic. As noted
there are times during the year where contact rates
are higher, such as when juvenile foxes disperse,
or when a neighboring community practices rabies
control via culling thereby disrupting the fox’s social
structure [4]. Consequently, over a very small time
period there may be an increase in the number of
infected individuals of a population.
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1.1 Migration

The details of the ODE model in will be explored later
on; however, this model does not consider migration [4].

Wildlife rabies emerged in Europe after dog rabies
was eliminated, the new primary host being the red
fox (V. vulpes) [8]. Coming from the east, fox rabies
spread inexorably across the continent within a few
decades. By the mid-1980s, large parts of central
and western Europe were affected. The westward
expansion came to a halt in areas such as France
and northern Italy, where foxes were treated with oral
rabies vaccine. Infected foxes are responsible for
maintaining the rabies virus within the fox population
and also for transmission to other wildlife species and
domestic animals. In affected areas, rabies is detected
in a wide variety of species at different frequencies.
To have an idea of what the rabies population
dynamics look like, consider Figure 1 below. Here
the data presented is from and is comprised of all
mammalian species in their database [12]. In Figure
1 the dynamics are dominated by the observed
infected red foxes. Recall though, as previously
mentioned, that the observations may only represent
2-10% of the total number of red foxes. The data
from many countries in Eastern and Western Europe
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is presented in, however as commonly noted; the
Ukraine and the Russian Federation provide a
reservoir for spreading the disease to other countries
[12]. The countries Belarus and Romania are also
shown in Figure 1 to demonstrate the dynamics of
nearby countries.

Besides the dynamics presented above, there is also
a variety of dynamics present within subpopulations.
For instance observed cases within the human
population present the dynamics in Figure 2.

Moving further from the Ukraine and the Russian
Federation, we see that Western Europe is mostly
free from rabies [1,12]. However, they are not free
from the threat. Since fox rabies has been controlled
in Western Europe, the costs for oral vaccination
have been substantially reduced but other European
countries now striving to eliminate fox rabies are
incurring high costs. Recent incursions into Italy,
although now under control, required substantial
financial commitments, and costs may escalate
elsewhere, given the threat of emergence in
countries such as Greece. The cost of setting up a
protective barrier along the entire eastern border of
the European Union to prevent such incursions is
estimated to be over 6 million US dollars per year [8].
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Figure 1. Number of observed cases on a yearly basis over all mammalian species. Data taken from [12].

ISSN 1860-3122

- 403 -



Russian Federation M rabies cases

0

T 70 %o 7o 7o 2o %0 70 0 %0, 70 S0 S22y - D, . % ., %
079,29 29.29%.7% 296,907 %.7%. %0050 0o <000 00,500 S0 S0, 0005, 0505, 50,0, 0
B A e A A SN

Years

Figure 2. Number of observed cases of rabies in humans
on a yearly basis. Data taken from [12].

Consequently understanding the dynamics present
in Eastern Europe can be of value to Western
Europe as well, allowing better and cheaper control
strategies, such as mass vaccination which to date
has been the most effective means of control [1].

The data from along with the mentioned space time
interaction dependencies indicate that migration has
pulse action (Figures 1 and 2) [12]. We will start with
the previously described ODE given in and modify
it by allowing a periodic influx of infected individuals
modeled as a pulse [4].

2. Methods

In section 2.1 it was noted that, for foxes with
dominate the spread of rabies, factors such as
juvenile migration, seasonal mating and control
procedures among countries affect rabies dynamics.
These factors do have seasonality however the data
presented in Figures 1 and 2 indicates pulse like
features, as well. This has encouraged us to model
these pulses with a discrete kick. In particular, we
consider modifications to the model presented in as
given below [4].

2.1 ODE

dX/dt=rX-YXN-BXY (1)
dl/dt=BXY- (o+b+YN) | (1)
dY/dt=0l- (a+b+YN) Y (1)

* Number of Susceptible: X
*  Number of Latent: /

* Number of Infected: Y

+ Death Rate: b

« Population Growth Rate: a

« Latency Period: 1/0
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+ Death Rate of rabid foxes: a
« Rabies Transmission coefficient: 8

+ Self-competition term related

capacity: y

to carrying

* Immigration plus births - Emigration and
deaths of susceptible: r

2.2 Adding discrete kicks to an ODE

As already discussed, this model should include
some sort of temporal forcing, preferably as a pulse.
We accomplish this by modifying equation 1 above
as follows:

dX/dt=rX-YXN-BXY )
dl/dt=BXY- (o+b+YN) 1+X_  hX5(t-nK) (2)
dY/dt=cl- (a+b+YN) Y 2)

» Dirac distribution: o

« Time of first instance where infected foxes
successfully enter population: k

Dirac distribution 6, defined by the property that
[£(t)5(t)de=£(0) (3)

forall continuous functions fdefined on R. Equivalently
0 may be defined as a probability measure that takes
the value of 1 for all sets containing the origin and 0
otherwise [7,11,14].

We now show how to integrate (2), however more
details can be found in [7]. Let /_ represent the number
of latents just after the m" kick and let /, represent
the number of latents just before the m* kick. Thus
integrating dl/dt we obtain

1, my+0 0
far="[ (BXY ~(c+b+yN)I)+ Y hXS(1—nk)di (4
I, my—0 n=0

Or equivalently we may write

Ifdl = mr(ﬂXY—(a+b +yN)I)di+ Tihx&(r—nk)dz ()

1, my—0 my—on=0

Because (BXY - (o + b + yN)I) is bounded on
(mk =€y mk + 6) we have

lim | (BXY~(o+b+yN)I)dr=0 (6)
For 0<0O <k, the only non-zero term in the summation
is when m=n. Hence, we have

1, my+0 my+0
lim ;[d]:é%n I‘(,BXY—(J+b+;/N)1)dt+!iiEgmLhXé'(t—nk)dt 7)

m—0

which by (6) becomes
1, m +0
lim |l =lim _jzXé‘(t—nk)dt (8)
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Applying the definition of & on the right (noting that
X is continuous at t=mk) and integrating as usual on
the left, which does not depend on ¢, we have

I =1,+hX, (9)

In Figure 1 there is a change from few or no to
infected animals to populations of considerable
size, in the Ukraine. This indicates we are working
with introductory level events, particularly of a pulse
nature which is modeled by a discrete kick through the
Dirac distribution in equation 2. Ideally we consider
introductions from each of the classes of the outside
environment into the population of study. However,
importance in place on the latent class which will
become infected and possibly spread the disease
rapidly through the study population. We could have
modeled the pulse into the infected class; however,
rabies has a high death rate. Hence we have worked
under the assumption that introduction of the disease
through migration is more likely through the latent
class.

We consider the pulse action, via the Dirac distribution
to be a linear function of the susceptible. Specifically,
in the standard epidemic model, the susceptible
population determines whether a disease will become
an epidemic or die out [10]. The linearity, in the kick
term, is to begin simple and avoid over-fitting. A more
complex kick term might fit the current data better;
however it would also assume more knowledge
and may result in increased error when looking at
future data. Note that the kick term is a function of
the number of susceptible in the population of study
when it should be a function of the susceptible in the
surrounding populations. This is because we are
making an assumption of homogeneity. More precisely
we are assuming that the proportion of susceptible
in the surrounding populations is proportional to the
number of susceptible in the populations of study.
It should be noted that by susceptible, latent and
infected we are primarily speaking of foxes in the
model, however, we may include any mammal.

2.3 Model dynamics

To study the dynamics presented in equation 2 we
consider the resulting map at the time of the kick.
In particular we integrate equation 1 to the time of a
kick and while fixing the values of X'and Y, at the said
time, we apply equation 9 to the value of /. We may
write this map as the composition G=L°XT where L is
the kick map and X_is the flow of the ODE at the kick
time. Of course since we cannot integrate equation 1
explicitly, the stroboscopic map G does not have an
explicit representation. Consequently the dynamics
must be studied implicitly. We should also note that
in this case G is acting as a hybrid map combining a
discrete and a continuous system.

When modeling any system, whether it is to test
a hypothesis where we construct a model before
fitting it to data, or an observational approach where
we construct a model for a particular set of data,

ISSN 1860-3122

Electronic Journal of Biology. 2016, Vol.12(4): 402-409

we need classes of models which can correctly
describe the data. For instance SEIR models,
which are a generalization of the model type used
in [4], are popular for modeling epidemics. Standard
SEIR models, however, typically do not exhibit the
complex behavior as is seen in data sets such the
1960’'s England and Whales measles epidemic.
Consequently, before proposing a class of models
we would like to know if a particular class of models
can exhibit the necessary dynamics needed to study
a system.

A plot representing the dynamics for the map G,
with parameters in Table 1, is displayed in Figure 3
below. The reasons for picking these parameters are
that rabies seems to exhibit complex dynamics, as
discussed in the introduction. Also, from Figures 1
and 2, the dynamics appear to exhibit complexity as
well. Consequently, we would like to see if the model
presented in equation 2 exhibits complexity, and
these parameters are a good place to start.

Proceeding with this investigation note that the
map G has a fixed point at X=/=Y=0. If we calculate
the Jacobian of the map about this saddle point
numerically we find it has a one dimensional unstable
manifold and a two dimensional stable manifold,
making it hyperbolic. The computed eigenvalues
where approximately 5226, 1 x 10 and 1.4 x 1078
however for calculations two-hundred decimal
places of precision were used. It may be helpful
to note that the ratio of the unstable to the stable
eigenvalues were about 400 billion and 500 million
respectively. Noting the eigenvalues is important
not just in terms of identifying a saddle point but
the differences in magnitudes indicate how costly a
mistake with integration can. Systems such as this
are considered stiff and the usual approach is to use
integration methods which are A-Stable. The basic

Table 1. Parameter values for used of the model in [2].

B o b r Y h k a

65 21 1 10 10 7.1 | 23/28 | 13
0.6
0.6- 0.5

Figure 3. Plot of stroboscopic map defined in (2) with
parameters defined at this beginning of this section.
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idea of A-Stability is to explore the properties of an
integration algorithm for a linear model often called
the “toy model.” If the region of convergence to 0 for
the algorithm is sufficiently large for the product of
the step size and the eigenvalue of the toy model,
the algorithm is said to be A-Stable. Unfortunately,
all A-Stable methods are implicit meaning integration
involves solving systems of nonlinear equations.
Taylor Integration which was used in this problem
is an explicit method that is asymptotically A-Stable,
however, which suffices for our purposes (Table 1
and Figure 3) [13].

2.4 Asymptotic computation of the unstable
manifold

The goal for our model is to show the existence of
a chaotic set. We do this by showing the transverse
intersection of the stable and unstable manifolds for
a fixed point, which results in the map represented by
our model being conjugate to a horseshoe map and
hence containing a chaotic set [9].

Since the maps we use in our models are implicit
we take a numerical approach to estimate the stable
and unstable manifolds. We begin by considering an
analytic map Q: R”— R"and a saddle point p,. The
stable manifold theorem guarantees the existence
of the local invariant stable and unstable analytic
manifolds given by S and U respectively which are
tangent to the stable and unstable spaces for DQ
(p,) at the said point and of the same dimension. The
global stable and unstable sets defined respectively
below.

w*(p,)=JO™"(S)

n>0

=Jo'w

n=0

We will discuss the procedure for estimating the
unstable manifold; the procedure for the stable
manifold is similar. As mentioned above suppose
that the dimension of the unstable manifold is given
by k < n. Because the manifold is analytic, it has
a Taylor expansion about the point p,. So we may
parameterize W* by Taylor expanding about a point
a € R¥as below.

b RF 5 R"
O,u, )—p()+ Z ( ()quj:( )
la|>1
and
ONpu(z) =po + Z ()no#( )
|| =1
where

a=(a,q,,...,a,)

lal=a,+a,+...+a,
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X=(X,, X0, X, )

_(xl ’xz pees X )
0% =0%0% ...0%
5[&[: 5

Sy

Using the above expansion about a e R with
é,(a) = p, we may take a linear approximation and

write

8,(x)=p,+ 04, (x—a)+O((x-1))

Since we know that 9, is locally tangent to the
unstable Eigen space of DQ (p,), we may write

8,(x)= p,+W (x=a) +0((x-a)’) (10)

where  W=[W,W,,.W,] is a matrix of linearly
independent columns and W, is an unstable
eigenvector of DQ (S).

Providing a suitable expansion for the unstable
manifold would mean knowledge of derivatives
beyond the first order which we do not have.
Consequently we will use the following property. Let
P,= =9, (x,) € W(p,). Then we have that for any m, e
N and A and elgenvalue of DQ (p,).

R = }IIE}OQ%O¢N,#( mﬂxo) (11)

However convergence is faster when A™x << 1,
which is the point we will exploit [6]. If Q were a linear
map then ?, would just be a matrix consisting of the
unstable elgenvectors of DQ (p,) and we could then
think of this as the eigenvalue property. Then using a
linearization argument, as suggested here, or Normal
Form theory we can show that this property holds
locally even when Q is not linear. The property can
then be extended as a global property of the unstable
manifold. To see why this property is useful note that
A gives us information about how quickly points move
along the unstable manifold and since A=1 represents
a non-hyperbolic case we would like to stay as far
away from this as possible. Consequently we may be
better off looking at the map Q™ and the eigenvalues
A™ if they are more hyperbollc However, since we
are trying to estimate ¢M this is just an asymptotic
approximation as ¢, , — @, .
Specifically we will start with a small neighborhood
B, of points about 0 € R*. We can then approximate
where on the unstable manifold these points should
be mapped using equation 11 above writing

W' (p) =Wy, =10"0d,, A" x )V, eB} (12)

We can compute an initial linear approximation for
¢,, and W*,  usingequation 10 then gets a better

approximation of the points for the unstable manifold
using 11. We then fit W“N,m0 using least squares

regression by a polynomial of the desired degree,
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say N. Since the Taylor expansion of ¢ is unique
we expect that this regression will approximate ¢N, u

. Using our estimate of we may use equations 10
and 11 to get a better estimate of w*, , . We repeat

this process to show convergence of the polynomial
coefficients for ¢, .

3. Results

We calculated parameterizations for the unstable
and stable manifolds by applying the algorithm in the
previous section to our map. Error was calculated for

0.06 -
0.05
0.04
0.03
0.02

0.01 »

Figure 4. Considering polynomial fits for the unstable
manifold with 200 terms, the above figure shows the
change in the coefficients versus algorithm iteration under
the L2norm.
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the stable manifold by integrating estimated points
forward in time to see if the points converged to the
origin. For the unstable manifold points were integrated
backwards in time to see if they converged to as well
to the origin, which is the saddle point about which we
are studying the map. The error for the stable manifold
after two iterations was 6 decimals and 40 decimal
places for the unstable manifold after 10 iterations.
For the unstable manifold the change in regression
coefficients with respect to the L? norm is shown
in Figure 4. Noting this is only a Cauchy argument,
however, there does appear to be convergence. Only
two iterations were performed for the stable manifold.
Integrating backwards in time was a computationally
difficult task. For the current results 200 terms were
needed for Taylor integration, not expansion of the
manifolds which also uses Taylor’s theorem 2. Using
less terms results in nonsensical output or the system
blowing up. Recently work has been done to speed
this up using cluster based computing. For Taylor
expansions for the actual manifolds only 30 terms were
used, for the stable manifold, do to time constraints
resulting from computational difficulty and 60 for the
unstable manifold (Figure 4).

The output of the algorithm can be viewed in Figure
5. The upper left and right show estimations of the
stable and unstable manifolds respectively. The
bottom center demonstrates two intersections of
the stable and unstable manifold. One intersection
occurs at the origin since that is the saddle point.
A second intersection occurs by taking a point on
the unstable manifold and iterating forward in time.
Their intersection which at least from the numerical

Figure 5. Stable and unstable manifolds for the fixed point (0,0,0). Upper lefts is an estimation of the stable manifold. Upper right
is an estimation of unstable manifold. Bottom center is an overlay showing the intersection of the stable and unstable manifolds.
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approximations appear to be transverse indicating
conjugacy to a horseshoe map and hence a chaotic
set. Thus addressing the question if the model from
[4] can be modified to handle the more complex
dynamics of rabies models (Figure 5).

4. Discussion

Rabies remains an important problem worldwide. In
Western Europe the disease is under control at both
the animal and human level, however, maintaining the
status quo is expensive [1]. In Eastern Europe such
as the Balkans (see Appendix A) the Ukraine and the
Russian Federation(Figures 1 and 2) we see that the
human cases are relatively under control, while there
is still a considerable degree of infection for animal
populations, though both are underreported [1]. Still
in other parts of the world, such as Africa and parts
of Asia neither the human or animal populations are
under control [3].

The underreporting is partially why we need modeling.
As discussed in the rabies observations only tell
us severity relative to other animal populations [3].
Concerning the total numbers of susceptibilities,
latent or infected, for any animal or human group
we have often have limited information. Rabies,
however, spreads between animal species so by
modeling we can specify how this information is
related, and update the models as new information
becomes available. At very least if we cannot give
exact numbers for populations we may be able to
specify the qualitative dynamics such as cycles or
other attractors which can helps us control the spread
of this dangerous disease.

As pointed out in the introduction rabies is both a
serious problem and one known to exhibit complex
dynamics. In a model was developed for the rabies
virus and a variable population however the model
leaves out migration events that are known to be
important to rabies dynamics [4]. For instance,
dispersion of juveniles, increased contact during
mating season, etc. To account for what from the
data seem to be impulse events and likely migration
a Dirac distribution was used to introduce a kick
and it was assumed to be a function of the number
of susceptible in the surrounding community. The
assumption is made that the number of susceptible in
the community being modeled is proportional to the
number of susceptible in surrounding communities.
In cases where this assumption is not reasonable,
further considerations would have to be made. Also
as noted earlier, it is primarily foxes that are being
modeled since they are primarily responsible for
spreading and maintaining the disease. Starting
with a simple pulse to avoid over fitting we observe
seemingly complex dynamics [2]. As mentioned
earlier, knowing the range of dynamics of a model
is important biologically. If the known dynamics of
a biological system are known to be more complex
than those attainable by that model, then the model
should not be used. To study the model’s dynamics,
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the algorithm in the previous section was used to
estimate the stable and unstable manifolds of a
fixed point and look at their intersection via curve
fitting and Taylor expansion of the manifolds. After
running the algorithm the estimations appear to
have a transverse intersection. Unfortunately due to
stiffness of the ODE the accuracy of the manifolds
was only computed to 6 and 40 decimal places for
the stable and unstable manifolds respectively. The
computation of this intersection reveals chaos and
is evidence that this model can mimic the complex
dynamics found in nature.

With regards to the algorithm, the accuracy was
restricted due to computational limitations. The
ratio of the eigenvalues for the unstable to the
stable manifolds had an order as high as 400 billion
meaning slight errors in the computations can blow
up very quickly. This placed restraints on the number
of times the algorithm for estimating the manifolds
could be used. For the unstable manifold expansion
(not Taylor Integration) 60 terms were used and for
the stable manifold while 30 were used for the stable
manifold. The latter case being two dimensional.
Since the main difficulty in the calculation stems from
integration of the underlying ODE one option would
be to use an integrator other than Taylor’'s method
with better stability properties or one that takes
advantage of resources such as parallel integrators.

For this model to be of use we would like to apply it
to the problem is Eastern Europe. However before
doing this we may modify the model to include
interactions between different species.

Consequently the data from 1977 to 2016 is presented
below and shows control of the disease in the human
population however demonstrates epidemics for
animals, in particular with foxes (Table 2).

Table 2. Reported rabies infections for Balkan states,
where data was obtainable, and Italy, from 1977-2016.
Domestic animals include dogs, stray dogs, cats, cattle,
equine, goats, sheep, pigs and other domestic animals.
wildlife include fox, raccoon dog, wolf, raccoon, badger,
marten, other mustelids, other carnivores, wild boar, roe
deer, red deer and fallow deer, other wildlife [12].

Country Human | Domestic | Wild Life | Fox
Albania 0 11 9 8
Bosnia - 0 132 626 605
Hercegovina
Bulgaria 1 84 353 146
Croatia 0 1014 12494 | 12262
Greece 0 8 40 40
Italy 2 20 499 442
Kosovo 0 0 0 0
Macedonia 0 1 8 4
Montenegro 0 32 173 163
Romania 3 1819 4349 4131
Slovenia 0 252 5137 4850
Turkey 1 8686 587 438
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