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Abstract 

Cell viability is a key factor in biotechnological 
industries and researches in which cells of all kinds 
of organisms are dealing with. As final products are 
strongly influenced by the cell performance, 
monitoring the cell viability during the fermentations 
is a necessity. A real time in-situ microscopic sensor 
using dark-field technology is developed for this 
purpose. Cell images taken at different time points 
are processed for automatically identification of 
living and dead cells. This procedure is based on 
supervised machine learning technique. Support 
vector machine is applied and satisfying results 
show promising applications in fermentation 
industries. 
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1. Introduction 
The characterization and monitoring of vital status 
of biological cells is a very essential part in the 
process of biological research and production, as it 
has a direct effect on the quality of the final results 
or products. In this sense, many methods have 
been developed for rapidness, accuracy and 
reliability in identifying the vital status of biological 
cells. Of these different approaches, two major 
categories can be made, one being off-line assays 
and the other being in-situ (in-line) inspection. The 
conception of off-line assays is collecting a fraction 
of biomass out of the fermenter, so that all kinds of 
possible physical, chemical or biological tests can 
be undertaken easily upon the sample, which is 
considered to be in the similar situation as the 
biomass in the fermenter and to have the similar 
parameters. Despite of the advantages of simplicity 
and diversity, off-line assays are still considered to 
give way to in-situ (in-line) methods in some specific 
situations like batch production in biological 

industries, because the latter are believed to be 
more easily conducted to automatic controlling and 
management, and better for feed-back and real time 
analysis.  

In order to meet the industrial demand, an in-situ 
microscopic sensor for determination of biomass 
parameters have been devised in the Technical 
Chemistry Institute of Hannover University[1,2], from 
which some important parameters of the biological 
cells can be determined, like cell size, cell density, 
and so on. However, due to the adoption of bright-
field illumination, the pictures of the cells are of quite 
low contrast. What can be clearly seen in these 
pictures are rather the cell contours than the details 
of the inner structure. Because of this disadvantage, 
no information about the cell vital status, namely 
viability (whether the cells are dead or living) and 
vitality (how vigorous the cells are) can be further 
given. 

In order to overcome this shortcoming, the 
manner of illumination has been suggested by our 
research group be changed into the dark-field type, 
which has been early proved to have higher contrast 
and suitable for observation of the inner structures 
of a cell. According to a former research done in our 
research group, significant intracellular movement 
can only be seen in living cells rather than in dead 
cells, which provides a persuading evidence for 
assertion of cell viability and vitality. Schematic set-
up of our dark-filed microscopy device is shown in 
Figure 1. 

This device comprises three major modules. One 
is an optical system comprises an light source unit 
which provides with dark-field illumination, and an 
imaging unit for taking pictures of the cells; the 
second is a mechanical system, which is designed 
to hold all the optical components and to drive the 
movable parts; the third, an electronic system in 
charge of supplying power to the sensor, and 
providing interface of communication with a 
personal computer. 
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Figure 1. Set-up of the microscopic sensor developed for determination biomass in fermenters, from Technical Chemistry 
Institute, Hannover University. 

 

2. Methodology 

In the meantime of hardware development, we have 
also carried out the software development. Both 
work was started almost at the same time; therefore 
the dark-field images of the cells required for 
software development were not taken with any in-
situ sensor, but under normal laboratory 
microscope. As mentioned before, according to a 
former research done in our research group, 
significant intracellular movement can only be seen 
in living cells rather than in dead cells. On the basis 
of this research, we have taken series of pictures of 
yeast cells with laboratory microscope under dark-
field condition like this: the suspension of yeast cells 
are picked up with a pipette and put onto the slide, 
and then a cover glass is placed upon the drop of 
sample to form a thin layer of liquid with yeast cells. 
What followed is sealing the cover glass at the rim 
with the oil used for oil immersion observation, so 
that the thin layer of liquid with yeast cells would not 
get dry quickly. In order to get high quality images of 
the cells, we have to wait for the cells to “calm 
down” in the liquid. We took not only one picture of 
the cells, but also a series of pictures with an equal 
time interval, for example, 5 seconds; and a series 
may contain up to 12 pictures, in which the 
intracellular details of the cells are recorded at 
different time point. In these pictures, we can see 
there exists two different patterns of intracellular 
movement: for some cells, they appear almost the 
same in all these 12 pictures without noticeable 
changes of the intracellular pattern, which are 

believed to be dead cells; for the other cells, 
significant movement of intracellular substance can 
be clearly observed, and this is expected to be an 
indication of the cells being still alive.  

In order to realize automatic classification of living 
and dead cells in the pictures, we have decided to 
make use of a pattern classification algorithm based 
on machine learning and neural networks as 
suggested by Nattkemper et al. [3,4]. For the 
purpose of training the neural networks, some 
supervising data set must be given in advance to 
teach the networks where are living cells and where 
are dead cells. So we have labeled one of the 
twelve images with a red dot representing living 
cells and a green dot representing dead cells. Our 
determination of living or dead is made through 
browsing the intracellular movement in the time-
lapse image sequences in accordance with the 
criterion described before.  

We also need to give the information of what the 
living cells or dead cells look like. So we have 
carried out a PCA (principle component analysis) 
operation upon the a data volume containing the 
score of each pixel of all the 12 images, and 
extracted the principle component (PC) that is for 
describing the score changes of each pixel during 
the specific time span, because the scores changes 
of the pixels are strong evidence of intracellular 
movement. In this case we have chosen the second 
PC to represent the different intracellular pattern in a 
time span for classification of living and dead cells.  

After that we can extract patches around the 
center of those labeled cells to form the training data 
set of the neural networks. For example, if we 
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choose patch size of 31pixels x 31pixels around the 
cell center, we get patches as shown in Figure 2. 
The three columns of images at the left side are 
patches extracted from the post-PCA image (the 
2nd PC) as obtained in last step; while at the right 
side, four columns contain those extracted from 
dead cell images. It is clear that due to two different 
patterns of intracellular movement, the living cells 
can be separated from the dead cells without much 
effort by eyes. 

 

 
 
Figure 2. Patches with size of 31pixels x 31 pixels 
extracted from the 2nd PC of living cells and dead cells. 
The three columns at the left side contain the patches of 
living cell images, and the four columns at the right side 
contain those from dead cell images. 
 

Another work worthy of doing is, try to reduce the 
dimensionality of the training dataset before we start 
to train the neural networks. That is to say, it is 
better to extract further “features” out of the patches 
shown in Figure 2 to represent the essential pattern 
of intracellular movements. This is a kind of 
reduction of dimensionality normally done in the 
pattern recognition field as the pretreatment of the 
data sets. For a patch with size of 31 x 31, the 
dimensionality is 961, namely, we use a 961-
dimension vector to represent a cell. That is too 
much for data processing with the neural networks, 
especially when the size of the whole training data 
set is very large. So it would be of great benefit to 
make use PCA again to reduce the dimensionality, 
thus reducing the complexity of the computation.  

Application of PCA to those patches shown in 
Figure 2 yields a distribution of the first ten principle 
components (PC’s) as shown in Figure 3. According 
to the 1/e2 criterion, the 6th PC, whose variance is 
just greater than 1/e2 of the 1st PC, might be 
adopted as the cut-off, namely, those PC’s whose 
variances are less than that of 6th PC should be 
considered as noise and removed from the data set. 
That is to say, we can use only 6 PC’s to represent 
the original data set, thus reducing the 

dimensionality from 961 to 6, and the computational 
complexity might be significantly reduced, perhaps 
with several orders of magnitude. That is very 
important for high-throughput or real-time analysis 
demanded by the biological industry.  

 
 
Figure 3. Dimensionality reduction for the patches shown 
in Figure 2 by applying PCA. The top ten principle 
components have been shown in descending order of the 
variance value. 

 
What follow are classification trials on the dataset 

we have so far, fully or reduced dimensional, with 
neural networks based classifiers. The datasets we 
have used for training and testing are denoted as 
shown in Table 1. 

 
Table 1. Denotation of dataset that has been used. 

 
patches of 

31x31 
feature 

patches of 6 x 6 
via PCA 

feature 
patches of 3 x 3 
via PCA 

R1 0˚  R1’ 0˚  R1” 0˚  
R2 90˚ 

rotation 
of R1 

R2’ 90˚ 
rotation 
of R1’ 

R2” 90˚ 
rotation 
of R1” 

R3 180˚ 
rotation 
of R1 

R3’ 180˚ 
rotation 
of R1’ 

R3” 180˚ 
rotation 
of R1” 

R4 270˚ 
rotation 
of R1 

R4’ 270˚ 
rotation 
of R1’ 

R4” 270˚ 
rotation 
of R1” 

 

3. Results and Conclusions  

Support Vector Machine (SVM) classifier is applied 
to eight trials with different datasets and parameters. 
Two typical kernels are used for mapping: linear 
kernel and Gaussian kernel. The results are given in 
Table 2. The major indication of success of 
identification is the testing error rate TE. We can see 
that Gaussian kernel always gives low error rates 
that is enough for identification of living and dead 
cells; while the lineal kernel is applicable only in 
some limited cases. 
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Table 2. Summary of the results of the trials. 

 
 1 2 3 4 5 6 7 8 
Training 
Dataset R1UR2UR3 R1 R1UR2UR3 R1 R1’ R1’ R1” R1” 

Testing Dataset R4 R4 R4 R4 R4’ R4’ R4” R4” 
Linear/ 
Gaussian 
Kernel 

L L G G L G L G 

TEmin(%) 19.048 23.81 4.762 2.381 33.33 4.762 11.905 9.524 
�TEmin - - 6.96 41.0 - 0.62 - 1.0 
SV#TEmin 83 (126)* 35  (42) 127 (126) 34  (42) 23  (42) 43  (42) - - 
 
TE: Testing error rate 
�: Shape parameter of Gaussian kernel 
SV#: number of support vectors 
*: The figure in the brackets is the total number of vectors 
 
From Table 2 we can also conclude that:  

1.) Gaussian kernel based SVM outpaces the 
Linear SVM in all cases.  

2.) For Linear SVM, the bigger the training 
datasets, the better the results; on the other 
hand, dimensionality reduction should be 
done beforehand in favor of improving the 
accuracy.  

3.) Different training datasets yield different 
Gaussian-shape parameter of �. The 
smaller the training datasets, the larger the 
�; the less the dimensionality, the smaller 
the �.  

4.) Increasing the size of the training datasets 
and reducing the dimensionality seem not 
to play an important role in Gaussian kernel 
SVM. 

4. Future Works 

Up to now, the identification trials have been done 
only with original images being training datasets 
and their rotational transformation being testing 
datasets. Next, a more rigorous cross-testing trial 
for small-scale datasets will be undertaken to prove 
the accuracy of the software as mentioned. 
Furthermore, automatic segmentation and labelling 
of the same micrographs on basis of the neural 
networks obtained by supervised training will be 
done to give another evidence of the feasibility of 

the software. After that, the framework of this 
software will be applied to the image sequences 
obtained from in-situ experiments, and more 
statistical approaches should be carried out. 
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