
Electronic Journal of Biology, 2017, Vol.13(2): 135-143

ISSN 1860-3122 - 135 -

Abstract

During the past decades, bioethanol becomes the 
best alternative to fossil fuels. Ethanol production by 
using edible feedstocks like sugarcane and grains 
became a point of concern in terms of the food supply 
and demand. Lignocellulosic biomass comprises 
non-edible feedstock opened a new method for 
the second-generation bioethanol production. 
Bioethanol production from lignocellulosic biomass 
is comprised of three main processes; pretreatment, 
enzymatic saccharification and fermentation. The 
major parameter to preventing the commercialization 
of bioethanol depends on the improvement of the 
enzymatic hydrolysis process. Through the enzymatic 
saccharification process carbohydrates (cellulose 
and hemicellulose) polymers get transformed into 
free monomeric sugars. The main issues connected 
with enzymatic saccharification are high incubation 
time for carbohydrates degradation, the price of the 
enzyme, prevent of enzyme activity in the attendance 
of phenolic compounds and thermal inactivation of 
cellulase and hemicellulase enzyme. This review 
describes recent tendency and improvement of 
the enzymatic saccharification step for cheaper 
bioethanol production. In this article, the authors 
discuss the following views: the process of biomass 
to ethanol production, enzymes for lignocellulosic 
hydrolysis, factors affecting enzymatic hydrolysis and 
cellulase intervened hydrolysis and the improvement 
or enhancement of enzymatic saccharification and 
its future prospects for commercial lignocellulosic 
bioethanol production.

Keywords: Second-generation bioethanol; 
Lignocellulosic biomass; Cellulose and hemicellulose 
enzyme; Enzymatic hydrolysis.

1. Introduction

As countries develop and living standards improve, 
energy demand grows rapidly. Another side, 
depletion of fossil fuel creating energy gap which 
proposes a considerable need for alternative energy 
resources [1]. The best theory to fill this energy gap is 

the use of sustainable and renewable resources like 
lignocellulosic biomass [2]. Bioethanol due to high 
energy density, reduction of CO2 emission, greater 
air-fuel ratio, and more heat of vaporization is one 
of the promising renewable energy which has a high 
potential for the replacement of fossil fuels [3,4]. 
Bioethanol is differentiated as first- and second-
generation ethanol, based on the raw material. First-
generation bioethanol is produced mainly from C6 
sugars such as sugar beets, cereals, and sugarcane 
while second-generation delivered from renewable 
lignocellulosic biomass and industrial by-products 
or residues [5,6]. But because of disputation of food 
versus energy, ethanol production from lignocellulosic 
residues has earned noticeable attention as a wide 
variety of feedstocks can be used as materials with 
no significant competition with the food chain [5-
7]. The majority of the procedure cost of ethanol 
production relies on the cost of raw material and in 
such a scenario; lignocellulosic biomass had made 
the procedure commercially feasible [8].

Production of bioethanol from lignocellulose 
particularly rely on two desirable steps: (1) 
pretreatment, and (2) hydrolysis [9,10]. Pretreatment 
is the crucial step of removing the lignin because 
the extent to which the biomass becomes easily 
obtainable to the enzyme for hydrolysis extremely 
relies on the type of pretreatment occupied [11]. 
Beside the pretreatment step, another important 
process is effective saccharification during hydrolysis 
of lignocellulosic biomass as it is the rate limiting 
process towards the techno-economic feasibility of 
lignocellulosic bioethanol [12,13]. Enzyme cellulase 
catalyzes the hydrolysis of cellulose by breaking 
the 1, 4-β-glycosidic bonds in between the cellulose 
chain of biomass [14]. Among the hemicellulase 
enzymes, xylan is one of the crucial ones which 
are engaged in the enzymatic saccharification [15]. 
Whole consumption of carbohydrate components 
in lignocellulosic biomass is dependent on the 
development of cheaper methods of technologies for 
cellulase and hemicellulase production [16,17], and 
also the improvement of enzymatic saccharification 
of carbohydrate component to monomeric sugars 
such as hexoses and pentoses [18]. It was reported 
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by many researchers that enzyme production is the 
most expensive step in the production of ethanol 
from lignocellulosic biomass. It covers about 40% of 
the total cost [19,20]. Then, for bioethanol production 
from commercial companies improvement of 
cheaper/cost-effective hemicellulase and cellulase 
production technology is necessary. Hence, this 
review describes widely about the current status of 
enzymatic saccharification to provide insight into 
hydrolysis process.

2. Process of Biomass to Ethanol Production 

Production of ethanol from lignocellulosic biomass 
includes three main steps: (1) pretreatment, (2) 
enzymatic saccharification/hydrolysis, and (3) 
fermentation [21]. Figure 1 presents the process of 

ethanol production from lignocellulosic biomass. For 
alteration of biomass structure as well as its overall 
chemical component a suitable pretreatment is 
needed to facilitate rapid and effective enzyme access 
and hydrolysis of carbohydrates to fermentable 
sugars [12,22]. Pretreatment is responsible for a 
notable proportion of process cost, and as a result, 
various pretreatment technologies have been 
identified during the last three decade; though these 
technologies are mainly determined to the biomass 
and enzymes. Figure 2 shows the most common 
pretreatment methods used on lignocellulosic 
biomass [9,10,23,24]. Enzymatic hydrolysis relates 
to the procedure that alters polysaccharides into 
monomeric sugars. The fermentable sugars obtained 
from hydrolysis can be fermented into ethanol and 
other products by microorganisms, which can be 

Figure 1. Process of ethanol production from lignocellulosic biomass [11].

Figure 2. Various pretreatments of lignocellulosic biomass [11].
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either naturally obtained or genetically modified 
[18,25]. 

3. Enzymes for Lignocellulosic Hydrolysis 

The saccharification procedure can be mainly carried 
out in two ways; enzymatically (biological) by (hemi) 
cellulolytic enzymes or chemically (acidic) by sulfuric 
or other acids [26]. The chemical reaction is done by 
using either dilute or concentrated acid. However, 
enzymatic hydrolysis is becoming a suitable process 
due to several benefits like low toxic compound 
generation, high product yield, less chemical 
requirements, less energy and mild environment 
conditions, and generation of fewer fermentation 
inhibitor products (Figure 3) [27,28]. Enzymatic 
decomposition of lignocellulose because of many 
structural features is extremely complicated and 
make it very recalcitrant. In addition to the complex 
network formed by cellulose, hemicellulose, and 
lignin, some enzymes can be absorbed by condensed 
lignin which decreases the hydrolysis yield by non-
specific linkages of these enzymes [29]. 

3.1 Cellulases 

Cellulases represent the primary family needed to 
depolymerize lignocellulosic substrates. Cellulose 
complex consists of endo-β-glucanase (EC 3.2.1.4), 
exo-β-glucanase (EC 3.2.1.91) and β-glucosidase 
(EC 3.2.1.21). Cellulase acts on cellulose in the 
following manner: endoglucanases act randomly 
on internal glucosidic linkages, in the amorphous 
portion of cellulose, releasing oligosaccharides with 
several polymerization degrees. Cellobiohydrolases 
degrade cellulose by removing cellobiose molecules; 
they can act on the crystalline portion of cellulose 
and attack from the reducing and non-reducing ends 
of the glucose chain [14,30]. Exoglucohydrolases 

are responsible for removal of glucose units from 
the non-reducing ends of cyclodextrins. Finally, 
β-glucosidases hydrolyze cellobiose into glucose 
and also remove glucose units from non-reducing 
ends of small cyclodextrins (Figure 4a) [14,30]. 
Individual enzymes are not effective for cellulose 
chain degradation to a monomeric unit, then 
synergistic action leads to a suitable hydrolysis. 
Major synergism has been observed firstly between 
endo and exo-βglucanase and secondly between 
exo-β-glucanases which act from both reducing and 
nonreducing end. βglucosidase overcomes catabolic 
repression by preventing accumulation of cellobiose 
[14]. 

3.2 Hemicellulases

Hemicellulases are the enzymes involved in the 
degradation of hemicellulose and it requires a more 
complex group of enzymes. In hemicelluloses, xylan 
is one of the major important enzymes which is 
involved in the enzymatic hydrolysis [15]. It demands 
endo-β-1,4-xylanase (EC 3.2.1.8), which acts 
randomly on the internal bond of xylan to release 
xylo-oligosaccharides, β-xylosidase (EC 3.2.1.37) 
which hydrolyzes the non-reducing ends of xylose 
chains to release xylose, and several supplementary 
enzymes including α-L-arabinofuranosidase (EC 
3.2.1.55), α-D-glucuronidase (EC 3.2.1.139), α-D-
galactosidase (EC 3.2.1.22), acetyl xylan esterase 
(EC 3.1.1.72) and ferulic acid esterase (EC 3.1.1.73) 
[15,31,32]. Schematic view of a hemicellulolytic 
system, degradation of arabinoxylan is depicted in 
Figure 5. 

The notion of supplementary enzymes has developed 
in the past years since most are regarded critical in 
enzymatic cocktails to improve sugar yields during 
biomass saccharification [33,34]. Furthermore, it 

Figure 3. Hydrolysis process for lignocellulosic biomass [27].
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has reported by Hu et al. [35] that supplementation 
of cellulase combination with hemicellulases can 
increase the rate and yield of glucan conversion 
since the reduction of hemicellulose exposes the 
cellulose fibrils and improve substrate accessibility. 
Synergism between the enzymes is a widely 
identified phenomenon in biomass hydrolysis and it 
relies on several parameters including the nature of 
the substrate and the source of enzymes. 

3.3 Producing cellulase and hemicellulase by 
microorganisms

There are numerous bacteria and fungi 
microorganisms which are involved in the cellulase 
production for digestibility. Bacteria demand 
anaerobic growth condition and have a very low 
growth rate, hence fungal cellulase have been mainly 
used for this purpose (Table 1). The system of fungal 
cellulases production works on the restrainer/inducer 
phenomena where glucose easily metabolized carbon 
sources act as restrainers while cellulose or other 
oligosaccharide act as inducers [36,37]. For cellulase 

production, the most examined fungi microorganisms 
are Trichoderma spp. and Aspergillus spp., native or 
genetically modified. These fungi produce a crude 
enzyme which can be used in the industry [38,39]. 

Endo-β-glucanase and exo-β-glucanase generate 
in high quantity and β-glucosidase generates in the 
low quantity by Trichoderma generate. However, 
Aspergillus is one of the fungi mostly produces endo-
β-glucanase and β-glucosidase in high quantity and 
generally lacks exo-β-glucanase [38,39]. Therefore, 
various researchers have presented blending 
enzymes from these two fungi as a technique 
to maximize the conversion of lignocellulose to 
monomer sugars. One of the noticeable fungal strain 
for high cellulase production is Aspergillus niger. It 
has a group of nine genera, but only some of them 
dominate for the production of cellulase [40,41]. 

Different media have investigated for the production 
of cellulase by using Aspergillus niger [38,40,42]. 
Isolation of five prospective Aspergillus sp. for 
cellulase production reported [43]. They reported the 

Figure 4. Simplified schematic of the hydrolysis of amorphous and microcrystalline celluloses by non-complexed (A) and 
complexed (B) cellulase systems (This figure is adapted from [64]).

Figure 5. Schematic model of enzymatic hemicellulose degradation. 
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highest production of endo-β-glucanase in the case 
of Aspergillus MAM-F23. Moreover, it was reported 
that sorghum straw has a great potential substrate 
for cellulase production. In this study, by using A. 
niger under submerged fermentation, maximum 
(about 0.77 IU/ml) and minimum (about 0.28 IU/
ml) cellulase production was belong to sorghum 
and wheat straws as substrate. Under solid state 
fermentation used Trichoderma reesei NCIM 992 
for the production of cellulase [44]. Aspergillus niger 
produced maximum xylanase activity (approximately 
14.41 FPU/mg) under solid state fermentation [45]. 
It was reported by Kumar et al. [46] that the highest 
CMCase production from Paenibacillus polymyxa 
is around 7.814 U/mg. In a study 34 fungal strains 
isolated for xylanase and cellulase production, the 
maximum xylanase and cellulase production obtained 
using Aspergillus sydowii SBS45 and Trichoderma 
sp. SBS60, relatively [47].

4. Production of Cellulase 

The first cellulose production endeavored on liquid 
water but because of gathering free sugar catabolic 
repression took place, that hindered the cellulase 
synthesis during the microbial growth. By nourished 
batch or continuous mode culturing can overcome 
this challenge but increase the final cost [48,49]. 
One of the favorable technical methods for reduction 
of processing cost is the production of cellulase 
on the agro-industrial residues through solid state 
fermentation (SSF) [50]. In these cheap residues 

carbohydrate act as a carbon source for fungal 
growth [48,50].

It has been reported various substrates for cellulase 
production by different researchers, like rice straw, 
wheat straw, sorghum straw, corn cob, cotton flower, 
cassava residue and groundnut shell [43-47,51]. The 
cellulase production under SSF by various fungal 
strains presented in Table 2. 

5. Factors Affecting Enzymatic Hydrolysis 
and Cellulase Intervened Hydrolysis

5.1 Factors affecting enzymatic hydrolysis 

Enzymatic saccharification of lignocellulosic biomass is 
disturbed by different hindrances that limit the enzyme's 
action. Despite, the factors that affect the productivity 
of saccharification of lignocellulose have been revised 
by many authors to obtain a comprehensive, rapid and 
effective conversion of cellulosic substrates remains a 
challenging goal [52]. Main factors influencing enzymatic 
hydrolysis can be divided into substrate features and 
enzyme-related factors. A summary of factors that 
influence enzymatic hydrolysis is shown in Table 3. The 
percentage and level of cellulose saccharification by 
cellulase enzymes are affected by two main chemical 
and physical parameters of the substrate: (1) CrI and its 
DP that decrease enzyme efficiency, and (2) the matrix 
polysaccharides and lignin coat the cellulose fibril that 
act as a physical barrier preventing enzymes from 
reaching the cellulose [54-56].

Lignocellulosic 
Biomass

Source of Cellulase  Total Sugar Yield Reduction 
(mg/g dry substrate)

Incubation Time
(h)

References

Rice straw Aspergillus niger 624 24 [65]
Rice straw Commercial cellulase 567 48 [66]
Wheat straw Trichoderma 

longibrachiatum
294 72 [67]

Wheat straw Trichoderma reesei 270 48 [68]
Wheat straw Trichoderma reesei 

NCIM 1186
371.44 24 [69]

Pinus roxburghii Locally isolated 
microorganism

334 24 [70]

Sorghum straw Coriolus versicolour 
TD17

440 5 days [71]

Sargassum sp. Commercial cellulase 326 72 [72]

Table 1. Total sugar yield reduction from different types of biomass by various microorganisms. 

             Fungal strains   CMCase activity (IU/gds) References 
Trichoderma citrinoviride AUKAR04 375 [73]
Penicillium oxalicum EU2106 225 [51]
Trichoderma sp. RCK65 145 [74]
Aspergillus oryzae 123.64 [75]
Fungal strains CG-10 29.04 [76]
Bacillus licheniformis 2.11 [77]
Trichoderma atroviride 90.43 [78]
Aspergillus niger HN-1 416.3 [40]
Aspergillus fumigatus Z5 526.30 [56]
Humicola insolens TAS-13 18.98 [77]

Table 2. Cellulase (Carboxymethylcellulose cellulase) production by various fungal strains under SSF condition.
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5.2 Factors affecting cellulase intervened 
hydrolysis

Cellulase intervened hydrolysis include mainly 
three steps: Adsorption of cellulase enzymes onto 
the surface of the cellulose (i) Bioconversion of 
cellulose to fermentable sugars (ii) Desorption 
of cellulase (iii) The controlling factors for these 
steps are mainly substrate concentration, enzyme 
dosage and reaction conditions. At intense substrate 
concentration, the decreasing sugar yield and 
reaction rates are reduced and it could be because 
of end product inhibition of cellulose enzyme but at 
low concentration, the decreasing sugar yield and 
reaction rates are improved [57,58].

It has reported avoiding substrate inhibition, lower 
substrate concentrations are more appropriate. 
Moreover, in this study, the authors realized at 16% 
stopping of corn flour the glucose yield was 76%, 
while at 40% stopping was just 50.2% [59]. High 
enzyme dosage considerably improves the procedure 
cost but it increases the sugar yield reduction at 
the same time. Hence, one of the best approaches 
to conquering the challenges is finding of optimum 
factors like pH, temperature and, incubation time at 
low enzyme dosage. Wang et al. [59] reported that 
sugarcane bagasse under alkali pre-treatment by 
using crude Trichoderma can have the highest rate 
of hydrolysis (37.29%) at 50°C. Enzymatic hydrolysis 
of alkali treated sugarcane bagasse quickly improved 
(more than 8 h) and at the later stages, the level of 
this improvement was significantly decreased [60]. 
Ahmed et al. [61] presented the highest sugar yield 
reduction (about 343 mg/g dry substrate) from wheat 
straw under NaOH pre-treatment at 55°C for 30 h 
by using cellulose which produced from Penicillium 
waksmanii. The differences in temperature were 
because of various species for the production of 
cellulose. Furthermore, the duration of hydrolysis 
procedure affects the hydrolysis rate [62,63]. 

6. Future Prospects of Enzymatic Hydrolysis 
Generally, hydrolysis process faces different 
hindrances which are economical and technical. 
Economic problems associated with the cost of raw 
material, cellulase enzyme, while technical issues are 
ineffective cellulase adsorption and value because 

of minimal specific substrate area, end product 
inhibition and lignin [11,28]. Then, hemicellulase and 
cellulase saccharification issue need to be taken 
care of for more improvement of lignocellulosic 
bioethanol technology. For enhancement of cellulase 
efficiency and yield under stress conditions, using 
genetically modified cellulolytic microorganisms by 
cellulase coding sequences into fungi, plants, and 
bacteria is suggested [78-80]. Although, a genetically 
engineered raw material with low lignin level and 
high carbohydrate content could decrease the cost. 
In addition, Solid-State Fermentation (SSF) also can 
be cost-effective by overcoming the end product 
inhibition. There is an important research to find 
out the mode of action of the crucial parameters 
that maintain interactions between biomass, 
hemicellulase, cellulase and prohibitive compounds 
[89-91]. This knowledge will supply a new approach 
to recognize better pretreatment and hydrolysis 
methods as industrial demand .
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