
Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 145 -

Nature-Inspired Metaheuristic Search Strategies
Mukesh Mann1,*, Pradeep Tomar1, Om Praksah Sangwan2, Shivani Singh1

1 School of Information and Communication Technology Gautam Buddha University, Greater Noida, Uttar
Pradesh, India;

2 Department of Computer Science and Engineering, Guru Jambheshwar University of Science and
Technology, Hisar, Haryana, India.

*Corresponding author. Tel: +91 9873106374; E-mail: mukesh.gbu@gmail.com

Citation: Mann M, Tomar P, Sangwan OmP, Nature-Inspired Metaheuristic Search Strategies. Electronic J Biol, 12:2

Received: February 20, 2016; Accepted: March 17, 2016; Published: March 24, 2016

Abstract

Research on metahurestic for solving optimization
problems has been appeared as a great subject of
interest during last few years. It involves modeling
the natural phenomena of various species foraging
for the food and as well as theory of natural
evolution of species. In this paper we discuss three
major metahurestic approaches for optimization
problems appeared in software testing such as
path prioritization, automatic test case generation,
test case selection etc. First we discuss Ant colony
optimization as suggested by Grasse in 1959 and
later modeled by Dorigo, Maniezzo, and Colorni in
1996 as one of the optimization algorithm for solving
optimization problems. Second focus is on natural
inspired phenomena of Honey bee colony suggested
by V. Tereshko, based on Reaction–diffusion diffusion
model of a honeybee colony’s foraging behavior.
Finally we end up with genetic algorithm inspired by
theory of evolution for solving optimization problems.
The survey results the potential use of mentioned
metahurestic approaches in software testing.

Keywords: Ant colony optimization (ACO); Artificial
bee colony (ABC); Genetic algorithm (GA).

1. Introduction

The process of testing a software system before
its actual use is essential for delivering error free
software. The system is checked by comparing the
expected output with the actual output after executing
sample input(s) [1]. If both expected and actual outputs
are same then there is no error else the system
contains an error. Thus the aim of software testing
is to find faults within the system by executing it with
sample input data. There are number of software
testing techniques such test case optimization and
prioritization [2-9] which are proposed in preceding

years to reduce various resources such as time,
human Intervention in testing phase.

A major area of research is in Structural Testing
which takes into account the code, structure of code
and internal design. Commonly used techniques for
structural testing [8-12] are that include control flow/
coverage testing, basic path testing, loop testing,
and data flow testing [13]. Recent studies in testing
indicate that a major work is in area of test case
generation and prioritization based on experimental
proofing. The techniques that are used in such
studies are inspired from Artificial intelligence [2-
5,14-16]. Therefore a part from the above mentioned
techniques a new focus for the researchers is how to
map natural intelligence to Artificial intelligence for
solving NP hard problems, one such nature inspired
intelligence called metahurestic search gives us
optimized solutions for a problem in hand. In this
paper we discuss various metahurestic techniques
on which research work is going on very rapidly.

1.1 The ant colony: Metahurestic

Ant algorithms are one of the most attracting areas
of research in optimization of software testing. The
natural foraging behaviour of real ant’s in wild space
was first modelled by Dorigo, Maniezzo, and Colorni
[8]. The indirect communication between ants within
the colony using pheromone secretion provide a
most powerful path for optimization methods. The
ant colony algorithms are considered to be a part
of Swarm intelligence i.e. multi- agent systems are
based on the behavior of natural real world insects
acting as swarm and collectively forming optimization
behavior while foraging. A number of such swarm
based algorithms has been proposed such as
artificial bee colony, artificial bee colony optimization
and particle swarm optimization. In this section a

Review Article

mailto:mukesh.gbu@gmail.com

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 146 -

details discussion on the idea behind ACO is put
forwarded to solve software testing problems in much
easy way as compared to the traditional approach.

1.2 Ant in the real world-a wild metaphor

In 1959 Grasse [17] first introduced a term known
as Stigmergy to the indirect form of communication
among multi-agents evolving as a self-organized
single system while modifying their local environment.
In 1990 Deneubourg, Aron, Goss, and Pasteels [18]
studied the ant colonies Stigmergy nature in which
each ant communicate indirectly by depositing a
chemical known as pheromone on their path and
the ant then tends to follow that path. Goss, Aron,
Deneubourg, and Pasteels [18] with their experiment
show that ants converge to the trail having higher
concentration on pheromone deposit. Let us
demonstrate a simple - Shortest bridge experiment ―
as conducted by (Goss et al.) [17]. Figure 1 shows
the diagrammatic view of setup in which two possible
paths from source (nest) to destination (food) are
shown. Path A is shorter than path B. Initially as the
ant move from the nest foraging for food, it follow
a random path but as the time passes we observed
that all ants following the path A. This is due to
the fact that when initially an ant move from her
nest following path A and after collecting food she
will reach to nest again in less time than an ant
which had followed the path B due to the distance

parameter and in this way it had deposited a
pheromone before the second ant following the path
B. Thus a convergence to a shortest path is achieved
(Figure 1). The experiment shows the exploration to
exploitation due to pheromone deposition tendency
of ants in real world.

1.3 From nature to artificial computers

In the following section, we briefly explain how the
ants’ behavior, as well as pheromone evaporation
can implement.

1.4 Probabilistic forward ants and solution
construction

In ACO, there are two mode of working, the first is

called forward move and the other is called backward
move. In forward mode the ant’s movement is from
nest (i.e. the source) to the food (destination) and
Vice-versa in backward mode. After reaching to food
source the ant reverse its direction .i.e. a shift to
backward direction in order to reach to the source.
The solution in forward moves is built by taking a
probabilistic decision for next node to move to
among those in the neighborhood of graph node on
which they are located. (Given a graph G = (N,A),
two nodes i, j~N if there exists an arc i, j~A).
This probabilistic choice is particularly biased on
pheromone deposited and Heuristic value between
two nodes.

1.5 Deterministic backward ants and pheromone
update

The use of an explicit memory allows an ant
to repeat the path it had followed while building
solutions. While moving backward, PP-ACO ants
leave pheromone trail on the arcs they traverse.

1.6 Pheromone updates based on solution quality

In ACO the ants memorize all nodes that are traced
through forward move, as well as the associated
arc’s cost if the graph is weighted. They can therefore
evaluate the cost of the solutions they build and use
this evaluation to modulate the amount of pheromone
and heuristic they deposit while in backward mode.
Making pheromone and heuristic update as function
of the generated solution quality ensure in directing
future ants more strongly toward better solutions.

1.7 Tour building

In Ant systems, the tour in a control flow graph (path)
is concurrently builds by m number of ants. An
ant start from an initial node and by using random
proportional rule the ant decides the next node to
be visited upon. The probability with which ant k, at
node i, chooses the node j is given as

, if ,ij ijk k
ij ik

i ij ij

P j N
l N

α β

α β

τ η

τ η

      = ∈
   ∈    ∑

Where Nij=1/dij is called heuristic which is priori
available and it indicates the visibility of a path so
that an ant can follow a path having higher heuristic.
Ni

k is the feasible neighbourhood of ant k at node
i i.e. the set of node in CFG which an ant has not
visited (Pij

K for choosing a node outside Ni
k is 0). The

NEST FOOD

Figure 1. Two possible path for foraging.

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 147 -

effect of pheromone and heuristic on next move is
determined by the value of α and β. Setting α=0,
will select the most closet node, if β=0 then only
deposited pheromone trail influence the next move
and it may leads to poor solutions. In situations when
a>1, a stagnation situation occurs in which all the
ants follow the same path and construct the same
tour, which, results in sub-optimal solutions [8]. Thus
it is extremely important to choose these parameters
very carefully. Good parameter values for the
various ant Algorithms are given in Table 1 [19]. In
the following section, we briefly explain how the ants’
behaviour, as well as pheromone evaporation can
implement.

1.8 Pheromone updation: A sequential way

After an ant has constructed its tour, the updation in
pheromone is completed by lowering the pheromone
value on all arcs visited by the ant by a constant
amount (or factor). This is also called as pheromone

evaporation. The left pheromone value is then
added to the nodes an ant has visited in their tour.
Pheromone evaporation is given as
ʈ
ij(1-ρ)ʈ

ij

Where 0<ρ<1, and ρ is the pheromone evaporation
rate. ρ controls the indefinite addition of the
pheromone thus permitting the algorithm to overlook
previously taken bad decisions. The pheromone
deposition after evaporation is defined as
 ʈijʈij +Δ ʈk

ij

Where Δ ʈk
ij is the pheromone deposited by kth ant on

the visited node, which is defined as:

k

|

1 ;arc(i, j) toT

0; ;

kk
ij ct
 ∈∆ 

 otherwise

Where Cl
k is the tour’s length built by the kth ant,

which is given by the summation of arc’s length which
belongs to Tk.

ACO algorithm α β Pheromone Evaporation (ρ) Number of antsm Initial Pheromone ʈ0

Ant systems 1 2 to 5 0.5 n m/cnn

EAS 1 2 to 5 0.5 N (e+m)/ ρ cnn

ASrank 1 2 to 5 0.1 N 0.5r(r-1)/ ρ cnn

MMAS 1 2 to 5 0.02 N 1/ ρ cnn

ACS - 2 to 5 0.1 10 1/ncnn

Table 1. Parameter setting for various ACO algorithms.

Reference Pub.
year Topic Author Thrust area Published in..

[20] 2013 A survey on optimization
metahurestic

Ilhem Boussaïd, Julien
Lepagnot and Patrick
Siarry

Survey of some of the
main metahurestic Elsevier

[21] 2009

Adaptable Learning
Pathway Generation with
Ant Colony
Optimization

Lung-Hsiang
Wong and Chee- Kit Looi

Modeling learning
pathways that
combines rule-based
prescriptive planning

International
Forum of
Educational
Technology &
Society (IFETS).

[22] 2005

An Ant Colony Optimization
Approach to Test Sequence
Generation for State based
Software Testing

Huaizhong LI and C. Peng
LAM

Automatic test
Sequence generation
for state- based
software testing

IEEE

[23] 2006
Artificial Ants as a
Computational Intelligence
Technique

Marco Dorigo, Mauro
Birattari, and Thomas
St¨utzle

Computational
intelligence IEEE

[24] 2007 Classification With Ant
Colony Optimization

David Martens, Manu De
Backer, Raf Haesen Classification IEEE

[25] 2009
Automatic Test Data
Generation Based On Ant
Colony Optimization

Kewen Li, Zilu Zhang and
Wenying Liu

Generating test data
based IEEE

[26] 2009

Building Prioritized
Pairwise Interaction Test
Suites with Ant Colony
Optimization

Xiang Chen, Qing Gu, Xin
Zhang and Daoxu Chen

Test generation
algorithms IEEE

Table 2. Survey on Ant colony approach in automated software testing.

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 148 -

[27] 2009

An Approach of Optimal
Path
Generation using Ant
Colony Optimization

Praveen Ranjan
Srivastava, Km Baby and
G
Raghurama

Optimal path
identification IEEE

[28] 2006

Automated Software
Testing
Using Metahurestic
Technique Based on An Ant
Colony Optimization

Praveen Ranjan Srivastava
and Km Baby

Ant colony theory
understanding and
application

(IRIDIA)
Technical Report
series Book chapter
in Approximation
Algorithms and
Metaheuristics

[29] 2007

Automatic Mutation Test
Input Data Generation via
Ant
Colony

K. Ayari, S. Bouktif and G.
Antoniol

Automatic test input
data generation in the
context of mutation
testing

ACM

[30] 2005
Software Test Data
Generation using Ant
Colony Optimization

Huaizhong Li and C. Peng
Lam

Test data generation
for the state based
software testing.

World Academy
of Science,
Engineering and
Technology, 2005

[31] 2002

A Review on the Ant
Colony
Metaheuristics: Basis,
Models and New Trends

Oscar Cordon, Frencisco
Herrera and Thomas
Stutzle

Application of ACO
to challenging
combinatorial
problems

Mathware and
Soft Computing

[32] 2010
Test Case Prioritization
using
Ant Colony Optimization

Yogesh Singh, Arvinder
Kaur and Bharti Suri

Regression test
prioritization
technique

ACM

[33] 2005
Comparison among five
evolutionary-based
optimization algorithms

Emad Elbeltagi, Tarek
Hegazy and Donald
Grierson

Comparison of five
recent evolutionary-
based algorithms:
genetic algorithms,
memetic algorithms,
particle swarm, ant-
colony systems, and
shuffled frog leaping

Elsevier

[34] 2009 A review of ant algorithms
R.J. Mullen, D.
Monekosso, S. Barman
and P. Remagnino

A critical review of
ACO algorithm Elsevier

[35] 2005
Ant colony optimization
theory:
A survey

Marco Dorigo and
Christian
Blum

Discuss ACO
algorithm and
various open
research question

Elsevier

The heuristic updation is given as
Δ nij no/Ci

k

In the Table 2 [20-35] we briefly discuss the
various works that has been contributed by various
researchers in field of software testing using ACO

1.9 Artificial bee colony optimization

Reaction diffusion model of a honeybee colony’s
foraging behavior [36]. Tereshko was the first who
mapped the foraging behavior of honeybee based
on reaction diffusion equations which results in
collective exploration and exploitation of food source
(i.e. candidate solutions) by swarm (honeybees) [37].
The model has three basic components as
•	 Food Sources: In order to select a food source,

a forager bee evaluates several properties related

with the food source such as its closeness to the
hive, richness of the food, taste of its nectar, and
the ease or difficulty of extracting this food. For
the simplicity, the quality of a food source can
be represented by only one quantity although it
depends on various parameters.

•	 Employed foragers: An employed forager is the
bee who is currently exploiting the food source
i.e. hunting the food source. After collecting the
nectar (food) from the food source she gives the
information about the various parameters such as
food quality, distance of food source from hive,
direction of food source to the bees in the hives
(onlooker).

•	 Unemployed foragers: These are the bees that
are continuously looking for the food to exploit it.

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 149 -

They are either the scout bees that are searching
the space near to hive randomly or the onlooker
bees that are waiting for the employed bee to
transfer the information about the food source
and once they get information they went out of
the hive to go in the direction of food. After leaving
the hive they themselves act as an employed bee
once they get the food source. On an average
there are about 5-10 % of scout bees.

The exchange of information about the food is totally
depends on the dance of employed bees in the hive,
once the employed bee get the food and return to
the hive , she dances on the floor called as waggle
dance. The onlookers closely watch this waggle dance
on the dancing floor and get employ herself at the most
profitable source depending on the dance. In this way a
recruitment process has been started i.e. onlookers are
recruited to become employed bees.

Let us try to understand the whole process using
Figure 2. We assume that there are two food sources
A and B. The source A is more rich i.e. higher nectar
than source B. Initially assume that two bees act as
forger (searching for food) about 5-10% are scouts
and the rest are onlooker bees in the hive. So these
initial two bees act as a scout bees and let bee (B1)
goes to food source A and the other bee (B2) goes
to food source B. Once they find the food source and
collect the nectar from it they become employed bee
E1 and E2 for B1 and B2 respectively. After collecting
the food she returns to the hive and start dancing
on the dancing floor. As two bee collect different
information about the food source so there dance is
different. Onlooker’s bees carefully watch the dance
of these two bees and decide which food source

they choose and in this way onlooker bees become
employed bees and reached to the food source.

An Artificial Bee Colony Algorithm: A simple ABC
algorithm is given in Listing 1.

ABC has been used in number of ways in different
automated software testing approaches. A detail list
of the survey is illustrated in the Table 3 [38-64].

From the literature survey it has been clear that ABC
has potential to solve many problems in automated
software testing domain. a critical insight from the
survey suggest that ABC has been used to make
software testing more reliable, time efficient and
better resource utilization. It is thus again an open
research area in automated software testing.

1.10 Genetic algorithm

Genetic Algorithm was proposed by Holland [2]. GA is
heuristic search algorithms that is inspired by natural
biological evolution of species and solve a variety of
optimization problems to improve the quality of the
search. A simple GA algorithm is shown in Listing 2.

The general flow chart for the same is shown in
Figure 3. A research survey on the use of genetic
algorithm in automated software testing has been
conducted as shown in Table 4 [65-85].

A Literature survey study among the various
metahurestic techniques used in automated software
testing has been discuss above which clearly indicate
frequently used metahurestic for automated software
testing during the last few years. The survey also
indicates the potential of using metahurestic as a
search technique in software testing [86-89].

Food source

Food source

A

B

EMPLOYED
BEE (E1)

EMPLOYED BEE(E2)

ONLOOKER

DANCING FLOOR

Figure 2. Honey bee wangle dance sharing information.

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 150 -

Reference Pub.
year Topic Author Published in

[38] 2012 A Recombination Based Hybridization of
Particle Swarm Optimization

Mustafa Servet Kiran and
Mesut Gunuz Elsevier

[39] 2010 A Modified Artificial Bee Colony Algorithm
for Real-Parameter Optimization

Bahriye Akay and Dervis
Karaboga Elsevier

[40] 2009 A New Design Method Based on Artificial
Bee Colony Algorithm for Digital IIR Filters Nurhan Karaboga Elsevier

[33] 2005 Comparison Among Five Evolutionary-
based Optimization Algorithms

Emad Elbeltagi, Tarek
Hegazy and Donald
Grierson

Elsevier

[41] 2007 On the Performance of Artificial Bee Colony
(ABC) Algorithm D. Karaboga and B.Basturk Elsevier

[42] 2008
An Artificial Bee Colony Algorithm for the
Leaf-Constrained Minimu
Spanning Tree Problem

Alok Singh Elsevier

[43] 2012 Block Matching Algorithm for Motion
Estimation Based on Artificial Bee Colony

Erik Cuevas, Daniel Zaldivar, Marco
Perez- Cisneros Elsevier

[44] 2012
Water Cycle Algorithm- A Novel
Metaheuristic Optimization Method for
Solving Constrained

Hadi Eskandar, Ali
Sadollah, Ardeshir Bahreininejad Elsevier

[45] 2012
Comparative Performance Analysis of
Artificial ABC Algorithm in Automatic
Generation Control

Haluk Gozde, M. Cengiz
Taplamacioglu and illah Kocaarslan Elsevier

[46] 2011
Automated Generation of Independent
Paths and Test Suite Optimization Using
Artificial Bee Colony

Soma Sekhara Babu Lam
and M L Hari Prasad Raju Elsevier

[47] 2012
The Further Research on the Application of
ABC to the Optimization and Control of
Project

Cui Qiao and Hengshan Wang
Canadian Center
of Science and
Education

[48] 2007
Artificial Bee Colony Algorithm and Its
Application to Generalized Assignment
Problem

Adil Baykaso? lu, Lale Özbakır and
Pınar Tapkan N/M

[49] 2010 Application of Artificial Bee Colony
Algorithm to Software Testing

Surender Singh Dahiya, Jitender
Kumar Chhabra and Shakti Kumar IEEE

[50] 2011 Search-Based Software Testing: Past,
Present and Future Phil McMinn IEEE

[51] 2012 Overview of Artificial Bee Colony (ABC)
Algorithm and Its Applications

Fahad S. Abu-Mouti and Mohamed
E. El-Hawary IEEE

[52] 2012
A Discrete Artificial Bee Colony Algorithm
for the Traveling Salesman Problem with
Time Windows

Korhan Karabulut and M. Fatih
Tasgetiren IEEE

[53] 2011 A Survey of Combinatorial Testing Changhai Nie	 Hareton Leung ACM

[54] 2012 A Comprehensive Survey: Artificial Bee
Colony (ABC) Algorithm and Aplications

Dervis Karaboga, Beyza
Gorkemli and Celal Ozturk Springer

[55] 2007
A Powerful and Efficient Algorithm for
Numerical Function Optimization: (ABC)
algorithm

Dervis Karaboga and Bahriye
Basturk Springer

[56] 2009 A Comparative Study of Artificial Bee
Colony Algorithm

Dervis Karaboga and Bahriye
Basturk Elsevier

[57] 2011 A Survey on the Applications of Bee Colony
Optimization Techniques Dr. Arvinder Kaur and Shivangi Goyal IJCSE

[58] 1995 Removing	 the	 Genetics	 from	
the Standard Genetic Algorithm Shumeet Baluja and Rich Caruana

[59] 2009 ABC Tester - Artificial Bee Colony Based
Software Test Suite Optimization Approach D. Jeya Mala and V. Mohan IJCSE

[60] 2012
Hybrid Harmony Search and ArtificialBee
Colony Algorithm for Global Optimization
Problems

Bin Wu, Cunhua Qian, Weihong Ni
and Shuhai Fan Elsevier

Table 3. Survey on bee colony approach in automated software testing.

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 151 -

[61] 2012 Artificial Bee Colony Programming for
Symbolic Regression

Dervis Karaboga, Celal Ozturk,
Nurhan Karaboga and Beyza
Gorkemli

Elsevier

[62] 2011 Collaborative Artificial Bee Colony
Optimization Clustering Using SPNN D.Shanthi and R.Amalraj Elsevier

[63] 2011 Nature Inspired Cooperative Strategies for
Optimization (NICSO 2011)

David Alejandro
Pelta,Natalio Krasnogor, Dan
Dumitrescu

Springer

[64] 2012

Artificial Bee Colony Algorithm	
with
Improved Explorations for	
Numerical
Function Optimization

Mohammad Shafiul Alam,
Md. Monirul Islam and
Kazuyuki Murase

Springer

Generate init ial population

Perform crossover

Perform mutation

Stopping
criteria

satisfied

End

Insert offspring into population

Select individual from
population for mating

Figure 3: Flowchart of a simple genetic algorithm.

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 152 -

Ref No Pub. year Topic Author Published in.

[65] 2011
Diversity oriented test data
generation using Metaheuristics
search techniques

Paulo M.S. Bueno , Mario
Jino, W. Eric
Wong

Elsevier

[66] 2006
Automatic test data generation
using genetic algorithm and program
dependence graphs

James Miller, Marek
Reformat, Howard
Zhang

Elsevier

[67] 2009 Application of Genetic Algorithm in
Software Testing

Praveen Ranjan
Srivastava and Tai- hoon
Kim

International Journal of
Software Engineering and Its
Applications

[68] 2010
Using Genetic Algorithms and
Dominance Concepts for Generating
Reduced Test Data

Ahmed S. Ghiduk
Moheb R. Girgis Informatica

[69] 2009
Eccentric Test Data Generation
for Path Testing Using Genetic
Algorithm

Punam Mishra,
Bhabani Shankar
Prasad Mishra

International
Conference on Computer
Engineering and Applications

[70] 2004 Search-based software test data
generation: a survey Phil McMinn

Software
Testing, verification and
reliability

[71] 2007
Automatic software test data
generation for spanning sets
coverage using genetic algorithms

Abdelaziz M.
Khamis,Moheb R.
Girgis,Ahmed S. Ghiduk

Computing and
Informatics,

[72] 1996
Automatic structural testing using
genetic
algorithms

B. F. Jones, H.-H.
Sthamer and D. E. Eyres

Software Engineering
Journal

[73] 1997 Genetic Algorithms for Dynamic Test
Data Generation

Christoph C.
Michael, Gary E. McGraw,
Michael A. Schatz ,Curtis
C. Walton

IEEE

[74]
Automated Software Test Data
Generation for
Complex Programs

Christoph Michael &
Gary McGraw Not mentioned

[75] 2000 Using Genetic Algorithms for Test
Case Generation in Path Testing

Jin-Cherng Lin and
Pu-Lin Yeh IEEE

[76] 2001 Generating Software Test Data by
Evolution

Christoph C. Michael,
Gary McGraw,Michael A.
Schatz

IEEE Transactions on Software
Engineering

[77] 2002 Breeding Software Test Cases with
Genetic Algorithms

D. Berndt, J. Fisher,
L. Johnson, J. Pinglikar,
and A. Watkins

Proceedings of the
36th Hawaii International
Conference on System Sciences
(IEEE)

[78] 2004
Investigating the Performance of
Genetic Algorithm-Based Software
Test Case Generation

Donald J. Berndt and
Alison Watkins

Proceedings of the
Eighth IEEE International
Symposium on High Assurance
Systems Engineering

[79] 2003 Genetic Algorithm Based Test Data
Generator

Irman Hermadi AND
Moataz A. Ahmed IEEE

[80] 2004

Using a Genetic Algorithm and
Formal Concept Analysis to
Generate Branch Coverage Test
Data Automatically

Susan Khor and
Peter Grogono

Proceedings of the
19th International Conference
on Automated Software
Engineering

[71] 2008
Automatic Path-oriented Test Data
Generation Using a Multi-population
Genetic Algorithm

Yong Chen and
Yong Zhong

Fourth International
Conference on Natural
Computation (IEEE)

2012
A Concept of Out Degree in CFG for
Optimal
Test Data Using Genetic Algorithm

Shadab Irfan and
Prabhat Ranjan

1st Int’l Conf. on
Recent Advances in Information
Technology (IEEE)

Table 4. Survey on genetic algorithm approach in automated software testing.

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 153 -

2. Conclusion

In this paper we analyze scope of research that can
be carried out in computer science especially in field
of software testing using nature inspired algorithms
such as ACO, ABC AND GA. From the survey we
conclude that during the last few decades there has
been a significant change in testing approaches.
Metahurestic approaches are slowly replacing the
Manual and traditional testing activities. We have
a strong observation that these nature inspired
algorithms are not only useful on computer science
but also in other related filed such as electronics
(making optimized control flow, load balancing, circuit
optimization and related optimization problems)
and biology such as protein folding prediction. Thus
metahurestic is growing area for research and is open
to carry out new researches. We have observed
that researchers are moving from traditional
algorithms to natural inspired algorithms in solving
NP hard problems.

Acknowledgements

This Work was supported by university grant
commission (UGC), Government of India for
Doctoral Research Study under Grant No. F./201415/
NFO201415OBCDEL16123. The authors are very
grateful to the anonymous reviewers for providing
valuable and detailed comments that have greatly
improved the paper.
References
[1]	 Myers GJ, Badgett T, Thomas TM, et al. (2004). Inc

ebrary. The Art of Software Testing.

[2]	 Holland JH. (1975), Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence, U Michigan
Press.

[3]	 Korel B, Laski J. (1991). Algorithmic software fault
localization. System Sciences, 1991. Proceedings
of the Twenty-Fourth Annual Hawaii International
Conference on, IEEE. 246-252.

[4]	 Xu YC, Xiao RB. (2006). Hybrid particle swarm algorithm
for packing of unequal circles in a larger containing
circle. Intelligent Control and Automation, WCICA 2006.
The Sixth World Congress on, IEEE. 3381-3385.

[5]	 Zha W, Venayagamoorthy GK. (2005). Comparison
of non-uniform optimal quantizer designs for speech
coding with adaptive critics and particle swarm. Industry
Applications Conference, 2005. Fourtieth IAS Annual
Meeting. Conference Record of the 2005, IEEE. 674-679.

[6]	 Nenortaite J, Simutis R. (2005). Adapting particle swarm
optimization to stock markets. Intelligent Systems
Design and Applications, 2005. ISDA’05. Proceedings.
5th International Conference on, IEEE. 520-525.

[7]	 Do H,Rothermel G. (2006). On the use of mutation
faults in empirical assessments of test case prioritization
techniques. Softw Eng IEEE Trans. 32: 733-752.

[8]	 Dorigo M., Maniezzo V, and Colorni A. (1996). Ant system:
optimization by a colony of cooperating agents. Syst Man,
Cybern Part B Cybern IEEE Trans. 26: 29-41.

[9]	 Do H, Rothermel G., and Kinneer A. (2006). Prioritizing
JUnit test cases: An empirical assessment and cost-
benefits analysis. Empir Softw Eng. 11: 33-70.

[10]	Rothermel G, Harrold MJ. (1996). Analyzing regression
test selection techniques. Softw Eng IEEE Trans. 22:
529–551.

[11]	Liu S, Chen Y. (2008). A relation-based method
combining functional and structural testing for test case
generation. J Syst Softw. 81: 234-248.

[12]	Frankl PG, Weyuker EJ. (2000). Testing software to
detect and reduce risk. J Syst Softw. 53: 275-286.

[13]	Do H, Rothermel G, Kinneer A. (2004). Empirical studies
of test case prioritization in a JUnit testing environment.
Software Reliability Engineering, 2004. ISSRE 2004.
15th International Symposium on, IEEE. 113-124.

[14]	Mann M. (2014). Test case prioritization using Cuscutta
search. Netw Biol. 4:179.

[15]	Rothermel G, Harrold MJ, Von Ronne J, et al. (2002).
Empirical studies of test - suite reduction. Softw Testing
Verif Reliab. 12: 219-249.

[81] 2012

Automatic Program Instrumentation
in Generation of Test Data using
Genetic Algorithm for Multiple Paths
Coverage

P .Maragathavalli,
S.Kanmani

IEEE-International
Conference On Advances In
Engineering, Science And
Management

[82] 2012
Genetic algorithm based software
testing specifically structural testing
for software reliability enhancement

NIRPAL P.B. AND
KALE K.V.

International Journal of
Computational Intelligence
Techniques

[83] 2000 Automated test-data generation for
exception conditions

N. Tracey, J. Clark,
K. Mander§ and J.
McDermid

SOFTWARE—
PRACTICE AND EXPERIENCE

2012
Program test data generation for
branch coverage with genetic
algorithm

AnkurPachauriand
Gursaran CS & IT-CSCP 2012

[84] 2005
Automatic Test Data Generation for
Data Flow Testing Using a Genetic
Algorithm

Moheb R. Girgis Journal of Universal
Computer Science

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 154 -

[16]	Kim JM, Porter A. (2002). A history- based test
prioritization technique for regression testing in resource
constrained environments. Software Engineering,
2002. ICSE 2002. Proceedings of the 24rd International
Conference on, IEEE, 119-129,

[17]	Grassé PP. (1959). The reconstruction of the nest
and coordination inter chez Bellicositermes natalensis
etCubitermes sp. theory stigmergy: Interpretive Essay
behavior of termites manufacturers. Soc insects. 6: 41-80.

[18]	Deneubourg JL, Aron S, Goss S, et al. (1990). The self-
organizing exploratory pattern of the argentine ant. J
Insect Behav. 3: 59-168.

[19]	Dorigo M, Birattari M, Blum C, et al. (2008). Ant Colony
Optimization and Swarm Intelligence: 6th International
Conference, ANTS 2008, Brussels, Belgium,
Proceedings, Springer.

[20]	Boussaïd I, Lepagnot J, Siarry P. (2013). A survey on
optimization metaheuristics. Inf Sci (Ny). 237: 82-117.

[21]	Wong LH, Looi CK. (2009). Adaptable Learning Pathway
Generation with Ant Colony Optimization. Educ Technol
Soc. 12: 309-326.

[22]	Li H, Lam CP. (2005). An ant colony optimization
approach to test sequence generation for state based
software testing. Quality Software, 2005 (QSIC 2005),
Fifth International Conference on, IEEE. 255-262.

[23]	Dorigo M, Birattari M, Stutzle T. (2006). Artificial ants as
a computational intelligence technique. IEEE Comput
Intell Mag.1: 28-39.

[24]	Martens D, De Backer M, Haesen R, et al. (2007).
Classification with ant colony optimization. Evol Comput
IEEE Trans.11: 651-665.

[25]	Li K, Zhang Z, Liu W. (2009). Automatic test data
generation based on ant colony optimization. Fifth
International Conference on Natural Computation,
IEEE. 216-220.

[26]	Chen X, Gu Q, Zhang X, et al. (2009). Building
prioritized pairwise interaction test suites with ant colony
optimization. Quality Software, 2009. QSIC’09. 9th
International Conference on, IEEE. 347-352.

[27]	Srivastava PR, Baby KM, Raghurama G. (2009). An
approach of optimal path generation using ant colony
optimization. TENCON 2009-2009 IEEE Region 10
Conference, IEEE. 1-6.

[28]	Srivastava PR, Baby K. (2010). Automated software
testing using metahurestic technique based on an Ant
Colony Optimization. Electronic System Design (ISED),
2010 International Symposium on, IEEE. 235-240.

[29]	Ayari K, Bouktif S, Antoniol G. (2007). Automatic
mutation test input data generation via ant colony.
Proceedings of the 9th annual conference on Genetic
and evolutionary computation, ACM. 1074-1081.

[30]	Li H, Lam CP. (2004). Software Test Data Generation
using Ant Colony Optimization. International Conference
on Computational Intelligence. 1-4.

[31]		García OC, Triguero FH, Stützle T. (2002). A review on the
ant colony optimization metaheuristic: Basis, models and
new trends. Mathw Soft Comput. 9: 141-175.

[32]	Singh Y, Kaur A, Suri B. (2010). Test case prioritization
using ant colony optimization. ACM SIGSOFT Softw
Eng Notes. 35: 1-7.

[33]	Elbeltagi E, Hegazy T, Grierson D. (2005). Comparison
among five evolutionary-based optimization algorithms.
Adv Eng informatics. 19: 43-53.

[34]	Mullen RJ, Monekosso D, Barman S, et al. (2009). A
review of ant algorithms. Expert Syst Appl, 36: 9608-
9617.

[35]	Dorigo M, Blum C. (2005). Ant colony optimization
theory: A survey. Theor Comput Sci, 344: 243-278.

[36]	Tereshko V. (2000). Reaction-diffusion model of a
honeybee colony’s foraging behaviour. Parallel Problem
Solving from Nature PPSN VI, Springer. 807-816.

[37]	Tereshko V. and Loengarov A. (2005). Collective
decision making in honey-bee foraging dynamics.
Comput Inf Syst, 9: 1.

[38]	Kıran MS, Gündüz M. (2013). A recombination-based
hybridization of particle swarm optimization and artificial
bee colony algorithm for continuous optimization problems.
Appl Soft Comput, 13: 2188-2203.

[39]	 Akay B, Karaboga D. (2012). A modified artificial bee
colony algorithm for real-parameter optimization. Inf Sci
(Ny). 192: 120-142.

[40]	Karaboga N. (2009). A new design method based on
artificial bee colony algorithm for digital IIR filters. J
Franklin Inst, 346: 328-348.

[41]	Karaboga D. and Basturk B. (2008). On the performance
of artificial bee colony (ABC) algorithm. Appl Soft
Comput. 8: 687-697.

[42]	Singh A. (2009). An artificial bee colony algorithm for the
leaf-constrained minimum spanning tree problem. Appl
Soft Comput. 9: 625-631.

[43]	Cuevas E, Zaldívar D, Pérez-Cisneros M, et al. (2013).
Block matching algorithm for motion estimation based
on Artificial Bee Colony (ABC). Appl Soft Comput. 13:
3047-3059.

[44]	Eskandar H, Sadollah A, Bahreininejad A, et al. (2012).
Water cycle algorithm-A novel metaheuristic optimization
method for solving constrained engineering optimization
problems. Comput Struct. 110: 151-166.

[45]	Gozde H, Taplamacioglu MC, Kocaarslan l. (2012).
Comparative perfor, IEEE. 153-163.

[46]	Abu-Mouti FS, El-Hawary ME. (2012). Overview
of Artificial Bee Colony (ABC) algorithm and its
applications. Systems Conference (SysCon), 2012
IEEE International, IEEE. 1-6.

[47]	Karabulut K, Tasgetiren MF. (2012). A discrete artificial
bee colony algorithm for the traveling salesman problem
with time windows. Evolutionary Computation (CEC),
2012 IEEE Congress on, IEEE. 1-7.

[48]	Nie C, Leung H. (2011). A survey of combinatorial
testing. ACM Comput Surv. 43: 11.

[49]	Karaboga D, Gorkemli B, Ozturk C, et al. (2014). A
comprehensive survey: artificial bee colony (ABC)
algorithm and applications. Artif Intell Rev. 42: 21-57.

[50]	Karaboga D, Basturk B. (2007). A powerful and efficient
algorithm for numerical function optimization: artificial
bee colony (ABC) algorithm. J Glob Optim. 39: 459-471.

[51]	Karaboga D, Akay B. (2009). A comparative study of
artificial bee colony algorithm. Appl Math Comput. 214:
108-132.

Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 155 -

[52]	Kaur A, Goyal S. (2011). A survey on the applications of
bee colony optimization techniques. Int J Comput Sci
Eng. 3: 3037.

[53]	Baluja S, Caruana R. (1995). Removing the genetics
from the standard genetic algorithm. Machine Learning:
Proceedings of the Twelfth International Conference.
38-46.

[54]	Mala D.J. and Mohan V. (2009). ABC Tester-Artificial
bee colony based software test suite optimization
approach. Int J Softw Eng. 2: 15-43.

[55]	Wu B, Qian C, Ni W, et al. (2012). Hybrid harmony
search and artificial bee colony algorithm for global
optimization problems. Comput Math with Appl. 64:
2621-2634.

[56]	Karaboga D, Ozturk C, Karaboga N, et al. (2012).
Artificial bee colony programming for symbolic
regression. Inf Sci (Ny). 209: 1-15.

[57]	Shanthi D, Amalraj R. (2012). Collaborative artificial bee
colony optimization clustering using SPNN. Procedia
Eng. 30: 989-996.

[58]	Pelta DA, Krasnogor N, Dumitrescu D, et al. (2011).
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2011). Springer Science and Business Media.

[59]	Alam MS, Islam MM, Murase K. (2012). Artificial
bee colony algorithm with improved explorations
for numerical function optimization. Intelligent Data
Engineering and Automated Learning-IDEAL 2012,
Springer. 1-8.

[60]	Bueno PMS, Jino M, Wong WE. (2014). Diversity
oriented test data generation using metaheuristic
search techniques. Inf Sci (Ny). 259: 490-509.

[61]	Miller J, Reformat M, Zhang H. (2006). Automatic test
data generation using genetic algorithm and program
dependence graphs. Inf Softw Technol. 48: 586-605.

[62]	Srivastava PR, Kim T. (2009). Application of genetic
algorithm in software testing. Int J Softw Eng its Appl.
3: 87-96.

[63]	Ghiduk AS, Girgis MR. (2010). Using genetic algorithms
and dominance concepts for generating reduced test
data. Informatica. 34.

[64]	Mishra P, Mishra BSP. (2009). Eccentric test data
generation for path testing using genetic algorithm. Int
Proc Comput Sci Inf Technol. 2: 536.

[65]	McMinn P. (2004). Search-based software test data
generation: A survey. Softw Test Verif Reliab. 14: 105-156.

[66]	Chen Y, Zhong Y. (2008). Automatic path-oriented
test data generation using a multi-population genetic
algorithm. Natural Computation, 2008. ICNC’08. Fourt
International Conference on, IEEE. 566-570.

[67]	Jones BF, Sthamer HH, Eyres DE. (1996). Automatic
structural testing using genetic algorithms. Softw Eng
J. 11: 299-306.

[68]	Michael CC, McGraw GE, Schatz MA, et al. (1997).
Genetic algorithms for dynamic test data generation.
Automated Software Engineering, 1997. Proceedings.,
12th IEEE International Conference, IEEE. 307-308.

[69]	Michael C, McGraw G. (1998). Automated software

test data generation for complex programs. Automated
Software Engineering, 1998. Proceedings. 13th IEEE
International Conference on, IEEE. 136-146.

[70]	Lin JC, Yeh PL. (2000). Using genetic algorithms for test
case generation in path testing. Test Symposium, 2000.
(ATS 2000). Proceedings of the Ninth Asian, IEEE. 241-
246.

[71]	Michael CC, McGraw G, Schatz MA. (2001). Generating
software test data by evolution. Softw Eng IEEE Trans.
27: 1085-1110.

[72]	Berndt D, Fisher J, Johnson L, et al. (2003). Breeding
software test cases with genetic algorithms. System
Sciences, 2003. Proceedings of the 36th Annual Hawaii
International Conference on, IEEE. 10-pp.

[73]	Berndt DJ, Watkins A. (2004). Investigating the
performance of genetic algorithm-based software test
case generation. High Assurance Systems Engineering,
2004. Proceedings. Eighth IEEE International
Symposium on, IEEE. 261-262.

[74]	Hermadi I, Ahmed MA. (2003). Genetic algorithm based
test data generator. Evolutionary Computation, 2003.
CEC’03. The 2003 Congress on, IEEE. 85-91.

[75]	Khor S, Grogono P. (2004). Using a genetic algorithm
and formal concept analysis to generate branch
coverage test data automatically. Automated Software
Engineering, 2004. Proceedings. 19th International
Conference on, IEEE. 346-349.

[76]	Maragathavalli P, Kanmani S, Kirubakar JS, et al. (2012).
Automatic program instrumentation in generation of test
data using genetic algorithm for multiple paths coverage.
Advances in Engineering, Science and Management
(ICAESM), 2012 International Conference on, IEEE.
349-353.

[77]	Nirpal PB, Kale KV (2012). Genetic Algorithm Based
Software Testing Specifically Structural Testing for
Software Reliability Enhancement. Int J Comput Intell
Tech ISSN. 466-976.

[78]	Tracey N, Clark J, Mander K, et al. (2000). Automated
test-data generation for exception conditions. Software-
Practice Exp. 30: 61-79.

[79]	Girgis MR. (2005). Automatic test datageneration for
data flow testing using a genetic algorithm. JUCS. 11:
898-915.

[80]	Mohapatra D. (2011). GA Based Test Case Generation
Approach for Formation of Efficient Set of Dynamic
Slices. Int J Comput Sci Eng. 3.

[81]	Sharma C, Sabharwal S, Sibal R. (2014). Applying
genetic algorithm for prioritization of test case scenarios
derived from UML diagrams. arXiv Prepr arXiv14104838.

[82]	Maragathavalli P, Anusha M, Geethamalini P, et al.
(2011). Automatic test-data generation for modified
condition/decision coverage using genetic algorithm.

[83]	Singhal A, Chandna S, Bansal A. (2012). Optimization
of Test Cases Using Genetic Algorithm 1.

[84]	Mahajan M, Kumar S, Porwal R. (2012). Applying genetic
algorithm to increase the efficiency of a data flow-based
test data generation approach. ACM SIGSOFT Softw
Eng Notes. 37.

