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Abstract 

Research on metahurestic for solving optimization 
problems has been appeared as a great subject of 
interest during last few years. It involves modeling 
the natural phenomena of various species foraging 
for the food and as well as theory of natural 
evolution of species. In this paper we discuss three 
major metahurestic approaches for optimization 
problems appeared in software testing such as 
path prioritization, automatic test case generation, 
test case selection etc. First we discuss Ant colony 
optimization as suggested by Grasse in 1959 and 
later modeled by Dorigo, Maniezzo, and Colorni in 
1996 as one of the optimization algorithm for solving 
optimization problems. Second focus is on natural 
inspired phenomena of Honey bee colony suggested 
by V. Tereshko, based on Reaction–diffusion diffusion 
model of a honeybee colony’s foraging behavior. 
Finally we end up with genetic algorithm inspired by 
theory of evolution for solving optimization problems. 
The survey results the potential use of mentioned 
metahurestic approaches in software testing.

Keywords: Ant colony optimization (ACO); Artificial 
bee colony (ABC); Genetic algorithm (GA).

1. Introduction

The process of testing a software system before 
its actual use is essential for delivering error free 
software. The system is checked by comparing the 
expected output with the actual output after executing 
sample input(s) [1]. If both expected and actual outputs 
are same then there is no error else the system 
contains an error. Thus the aim of software testing 
is to find faults within the system by executing it with 
sample input data. There are number of software 
testing techniques such test case optimization and 
prioritization [2-9] which are proposed in preceding 

years to reduce various resources such as time, 
human Intervention in testing phase. 

A major area of research is in Structural Testing 
which takes into account the code, structure of code 
and internal design. Commonly used techniques for 
structural testing [8-12] are that include control flow/
coverage testing, basic path testing, loop testing, 
and data flow testing [13]. Recent studies in testing 
indicate that a major work is in area of test case 
generation and prioritization based on experimental 
proofing. The techniques that are used in such 
studies are inspired from Artificial intelligence [2-
5,14-16]. Therefore a part from the above mentioned 
techniques a new focus for the researchers is how to 
map natural intelligence to Artificial intelligence for 
solving NP hard problems, one such nature inspired 
intelligence called metahurestic search gives us 
optimized solutions for a problem in hand. In this 
paper we discuss various metahurestic techniques 
on which research work is going on very rapidly.

1.1 The ant colony: Metahurestic

Ant algorithms are one of the most attracting areas 
of research in optimization of software testing. The 
natural foraging behaviour of real ant’s in wild space 
was first modelled by Dorigo, Maniezzo, and Colorni 
[8]. The indirect communication between ants within 
the colony using pheromone secretion provide a 
most powerful path for optimization methods. The 
ant colony algorithms are considered to be a part 
of Swarm intelligence i.e. multi- agent systems are 
based on the behavior of natural real world insects 
acting as swarm and collectively forming optimization 
behavior while foraging. A number of such swarm 
based algorithms has been proposed such as 
artificial bee colony, artificial bee colony optimization 
and particle swarm optimization. In this section a 
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details discussion on the idea behind ACO is put 
forwarded to solve software testing problems in much 
easy way as compared to the traditional approach.

1.2 Ant in the real world-a wild metaphor

In 1959 Grasse [17] first introduced a term known 
as Stigmergy to the indirect form of communication 
among multi-agents evolving as a self-organized 
single system while modifying their local environment. 
In 1990 Deneubourg, Aron, Goss, and Pasteels [18] 
studied the ant colonies Stigmergy nature in which 
each ant communicate indirectly by depositing a 
chemical known as pheromone on their path and 
the ant then tends to follow that path. Goss, Aron, 
Deneubourg, and Pasteels [18] with their experiment 
show that ants converge to the trail having higher 
concentration on pheromone deposit. Let us 
demonstrate a simple  - Shortest bridge experiment ― 
as conducted by (Goss et al.) [17]. Figure 1 shows 
the diagrammatic view of setup in which two possible 
paths from source (nest) to destination (food) are 
shown. Path A is shorter than path B. Initially as the 
ant move from the nest foraging for food, it follow 
a random path but as the time passes we observed 
that all ants following the path A. This is due to 
the fact that when initially an ant move from her 
nest following path A and after collecting food she 
will reach to nest again in less time than an ant 
which had followed the path B due to the distance 

parameter and in this way it had deposited a 
pheromone before the second ant following the path 
B. Thus a convergence to a shortest path is achieved 
(Figure 1). The experiment shows the exploration to 
exploitation due to pheromone deposition tendency 
of ants in real world. 

1.3 From nature to artificial computers

In the following section, we briefly explain how the 
ants’ behavior, as well as pheromone evaporation 
can implement.

1.4 Probabilistic forward ants and solution 
construction

In ACO, there are two mode of working, the first is 

called forward move and the other is called backward 
move. In forward mode the ant’s movement is from 
nest (i.e. the source) to the food (destination) and 
Vice-versa in backward mode. After reaching to food 
source the ant reverse its direction .i.e. a shift to 
backward direction in order to reach to the source. 
The solution in forward moves is built by taking a 
probabilistic decision for next node to move to 
among those in the neighborhood of graph node on 
which they are located. (Given a graph G = (N,A), 
two nodes i, j~N if there exists an arc i, j~A).
This probabilistic choice is particularly biased on 
pheromone deposited and Heuristic value between 
two nodes.

1.5 Deterministic backward ants and pheromone 
update 

The use of an explicit memory allows an ant 
to repeat the path it had followed while building 
solutions. While moving backward, PP-ACO ants 
leave pheromone trail on the arcs they traverse.

1.6 Pheromone updates based on solution quality

In ACO the ants memorize all nodes that are traced 
through forward move, as well as the associated 
arc’s cost if the graph is weighted. They can therefore 
evaluate the cost of the solutions they build and use 
this evaluation to modulate the amount of pheromone 
and heuristic they deposit while in backward mode. 
Making pheromone and heuristic update as function 
of the generated solution quality ensure in directing 
future ants more strongly toward better solutions.

1.7 Tour building

In Ant systems, the tour in a control flow graph (path) 
is concurrently builds by m number of ants. An 
ant start from an initial node and by using random 
proportional rule the ant decides the next node to 
be visited upon. The probability with which ant k, at 
node i, chooses the node j is given as

, if ,ij ijk k
ij ik

i ij ij

P j N
l N

α β

α β

τ η

τ η

      = ∈
   ∈    ∑

Where Nij=1/dij is called heuristic which is priori 
available and it indicates the visibility of a path so 
that an ant can follow a path having higher heuristic. 
Ni

k is the feasible neighbourhood of ant k at node 
i i.e. the set of node in CFG which an ant has not 
visited (Pij

K for choosing a node outside Ni
k is 0). The 
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Figure 1. Two possible path for foraging.
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effect of pheromone and heuristic on next move is 
determined by the value of α and β. Setting α=0, 
will select the most closet node, if β=0 then only 
deposited pheromone trail influence the next move 
and it may leads to poor solutions. In situations when 
a>1, a stagnation situation occurs in which all the 
ants follow the same path and construct the same 
tour, which, results in sub-optimal solutions [8]. Thus 
it is extremely important to choose these parameters 
very carefully. Good parameter values for the 
various ant Algorithms are given in Table 1 [19]. In 
the following section, we briefly explain how the ants’ 
behaviour, as well as pheromone evaporation can 
implement.

1.8 Pheromone updation: A sequential way

After an ant has constructed its tour, the updation in 
pheromone is completed by lowering the pheromone 
value on all arcs visited by the ant by a constant 
amount (or factor). This is also called as pheromone 

evaporation. The left pheromone value is then 
added to the nodes an ant has visited in their tour. 
Pheromone evaporation is given as
ʈ
ij(1-ρ)ʈ

ij

Where 0<ρ<1, and ρ is the pheromone evaporation 
rate. ρ controls the indefinite addition of the 
pheromone thus permitting the algorithm to overlook 
previously taken bad decisions. The pheromone 
deposition after evaporation is defined as 
       ʈijʈij +Δ ʈk

ij

Where Δ ʈk
ij is the pheromone deposited by kth ant on 

the visited node, which is defined as:

k

|

1 ;arc(i, j) toT

0; ;

kk
ij ct
 ∈∆ 

 otherwise

Where Cl
k is the tour’s length built by the kth ant, 

which is given by the summation of arc’s length which 
belongs to Tk.

ACO algorithm α β Pheromone Evaporation (ρ) Number of antsm Initial Pheromone ʈ0

Ant systems 1 2 to 5 0.5 n m/cnn

EAS 1 2 to 5 0.5 N (e+m)/ ρ cnn

ASrank 1 2 to 5 0.1 N 0.5r(r-1)/ ρ cnn

MMAS 1 2 to 5 0.02 N 1/ ρ cnn

ACS - 2 to 5 0.1 10 1/ncnn

Table 1. Parameter setting for various ACO algorithms.

Reference Pub.
year Topic Author Thrust area Published in..

[20] 2013 A survey on optimization
metahurestic

Ilhem Boussaïd, Julien 
Lepagnot and Patrick 
Siarry

Survey of some of the 
main metahurestic Elsevier

[21] 2009

Adaptable Learning 
Pathway Generation with 
Ant Colony
Optimization

Lung-Hsiang
Wong and Chee- Kit Looi

Modeling learning
pathways that 
combines rule-based 
prescriptive planning

International
Forum of 
Educational 
Technology & 
Society (IFETS).

[22] 2005

An Ant Colony Optimization
Approach to Test Sequence 
Generation for State based 
Software Testing

Huaizhong LI and C. Peng
LAM

Automatic test
Sequence generation 
for state- based 
software testing

IEEE

[23] 2006
Artificial Ants as a
Computational Intelligence
Technique

Marco Dorigo, Mauro 
Birattari, and Thomas 
St¨utzle

Computational
intelligence IEEE

[24] 2007 Classification With Ant 
Colony Optimization

David Martens, Manu De 
Backer, Raf Haesen Classification IEEE

[25] 2009
Automatic Test Data
Generation Based On Ant
Colony Optimization

Kewen Li, Zilu Zhang and
Wenying Liu

Generating test data 
based IEEE

[26] 2009

Building Prioritized 
Pairwise Interaction Test 
Suites with Ant Colony 
Optimization

Xiang Chen, Qing Gu, Xin 
Zhang and Daoxu Chen

Test generation
algorithms IEEE

Table 2. Survey on Ant colony approach in automated software testing.
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[27] 2009

An Approach of Optimal 
Path
Generation using Ant 
Colony Optimization

Praveen Ranjan 
Srivastava, Km Baby and 
G
Raghurama

Optimal path
identification IEEE

[28] 2006

Automated Software 
Testing
Using Metahurestic 
Technique Based on An Ant 
Colony Optimization

Praveen Ranjan Srivastava 
and Km Baby

Ant colony theory
understanding and 
application

(IRIDIA)
Technical Report 
series Book chapter 
in Approximation 
Algorithms and 
Metaheuristics

[29] 2007

Automatic Mutation Test 
Input Data Generation via 
Ant
Colony

K. Ayari, S. Bouktif and G. 
Antoniol

Automatic test input 
data generation in the 
context of mutation 
testing

ACM

[30] 2005
Software Test Data 
Generation using Ant 
Colony Optimization

Huaizhong Li and C. Peng
Lam

Test data generation 
for the state based 
software testing.

World Academy
of Science, 
Engineering and 
Technology, 2005

[31] 2002

A Review on the Ant 
Colony
Metaheuristics: Basis, 
Models and New Trends

Oscar Cordon, Frencisco 
Herrera and Thomas 
Stutzle

Application of ACO 
to challenging 
combinatorial 
problems

Mathware and
Soft Computing

[32] 2010
Test Case Prioritization 
using
Ant Colony Optimization

Yogesh Singh, Arvinder 
Kaur and Bharti Suri

Regression test 
prioritization 
technique

ACM

[33] 2005
Comparison among five
evolutionary-based 
optimization algorithms

Emad Elbeltagi, Tarek 
Hegazy and Donald 
Grierson

Comparison of five
recent evolutionary- 
based algorithms: 
genetic algorithms, 
memetic algorithms, 
particle swarm, ant-
colony systems, and 
shuffled frog leaping

Elsevier

[34] 2009 A review of ant algorithms
R.J. Mullen, D. 
Monekosso, S. Barman 
and P. Remagnino

A critical review of
ACO algorithm Elsevier

[35] 2005
Ant colony optimization 
theory:
A survey

Marco Dorigo and 
Christian
Blum

Discuss ACO 
algorithm and 
various open 
research question

Elsevier

The heuristic updation is given as
Δ nij no/Ci

k

In the Table 2 [20-35] we briefly discuss the 
various works that has been contributed by various 
researchers in field of software testing using ACO

1.9 Artificial bee colony optimization

Reaction diffusion model of a honeybee colony’s 
foraging behavior [36]. Tereshko was the first who 
mapped the foraging behavior of honeybee based 
on reaction diffusion equations which results in 
collective exploration and exploitation of food source 
(i.e. candidate solutions) by swarm (honeybees) [37]. 
The model has three basic components as
•	 Food Sources: In order to select a food source, 

a forager bee evaluates several properties related 

with the food source such as its closeness to the 
hive, richness of the food, taste of its nectar, and 
the ease or difficulty of extracting this food. For 
the simplicity, the quality of a food source can 
be represented by only one quantity although it 
depends on various parameters.

•	 Employed foragers: An employed forager is the 
bee who is currently exploiting the food source 
i.e. hunting the food source. After collecting the 
nectar (food) from the food source she gives the 
information about the various parameters such as 
food quality, distance of food source from hive, 
direction of food source to the bees in the hives 
(onlooker).

•	 Unemployed foragers: These are the bees that 
are continuously looking for the food to exploit it. 
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They are either the scout bees that are searching 
the space near to hive randomly or the onlooker 
bees that are waiting for the employed bee to 
transfer the information about the food source 
and once they get information they went out of 
the hive to go in the direction of food. After leaving 
the hive they themselves act as an employed bee 
once they get the food source. On an average 
there are about 5-10 % of scout bees. 

The exchange of information about the food is totally 
depends on the dance of employed bees in the hive, 
once the employed bee get the food and return to 
the hive , she dances on the floor called as waggle 
dance. The onlookers closely watch this waggle dance 
on the dancing floor and get employ herself at the most 
profitable source depending on the dance. In this way a 
recruitment process has been started i.e. onlookers are 
recruited to become employed bees.

Let us try to understand the whole process using 
Figure 2. We assume that there are two food sources 
A and B. The source A is more rich i.e. higher nectar 
than source B. Initially assume that two bees act as 
forger (searching for food) about 5-10% are scouts 
and the rest are onlooker bees in the hive. So these 
initial two bees act as a scout bees and let bee (B1) 
goes to food source A and the other bee (B2) goes 
to food source B. Once they find the food source and 
collect the nectar from it they become employed bee 
E1 and E2 for B1 and B2 respectively. After collecting 
the food she returns to the hive and start dancing 
on the dancing floor. As two bee collect different 
information about the food source so there dance is 
different. Onlooker’s bees carefully watch the dance 
of these two bees and decide which food source 

they choose and in this way onlooker bees become 
employed bees and reached to the food source.

An Artificial Bee Colony Algorithm: A simple ABC 
algorithm is given in Listing 1.

ABC has been used in number of ways in different 
automated software testing approaches. A detail list 
of the survey is illustrated in the Table 3 [38-64].

From the literature survey it has been clear that ABC 
has potential to solve many problems in automated 
software testing domain. a critical insight from the 
survey suggest that ABC has been used to make 
software testing more reliable, time efficient and 
better resource utilization. It is thus again an open 
research area in automated software testing.

1.10 Genetic algorithm

Genetic Algorithm was proposed by Holland [2]. GA is 
heuristic search algorithms that is inspired by natural 
biological evolution of species and solve a variety of 
optimization problems to improve the quality of the 
search. A simple GA algorithm is shown in Listing 2.

The general flow chart for the same is shown in 
Figure 3. A research survey on the use of genetic 
algorithm in automated software testing has been 
conducted as shown in Table 4 [65-85].

A Literature survey study among the various 
metahurestic techniques used in automated software 
testing has been discuss above which clearly indicate 
frequently used metahurestic for automated software 
testing during the last few years. The survey also 
indicates the potential of using metahurestic as a 
search technique in software testing [86-89].

Food source

Food source

A

B

EMPLOYED
BEE (E1)

EMPLOYED BEE(E2)

ONLOOKER

DANCING FLOOR

Figure 2. Honey bee wangle dance sharing information.



Electronic Journal of Biology, 2016, Vol.12(2): 145-155

ISSN 1860-3122 - 150 -

Reference Pub.
year Topic Author Published in

[38] 2012 A Recombination Based Hybridization of 
Particle Swarm Optimization

Mustafa Servet Kiran and
Mesut Gunuz Elsevier

[39] 2010 A Modified Artificial Bee Colony Algorithm 
for Real-Parameter Optimization

Bahriye Akay and Dervis
Karaboga Elsevier

[40] 2009 A New Design Method Based on Artificial 
Bee Colony Algorithm for Digital IIR Filters Nurhan Karaboga Elsevier

[33] 2005 Comparison Among Five Evolutionary-
based Optimization Algorithms

Emad Elbeltagi, Tarek
Hegazy and Donald
Grierson

Elsevier

[41] 2007 On the Performance of Artificial Bee Colony 
(ABC) Algorithm D. Karaboga and B.Basturk Elsevier

[42] 2008
An Artificial Bee Colony Algorithm for the 
Leaf-Constrained Minimu
Spanning Tree Problem

Alok Singh Elsevier

[43] 2012 Block Matching Algorithm for Motion 
Estimation Based on Artificial Bee Colony

Erik Cuevas, Daniel Zaldivar, Marco 
Perez- Cisneros Elsevier

[44] 2012
Water Cycle Algorithm- A Novel 
Metaheuristic Optimization Method for 
Solving Constrained

Hadi Eskandar, Ali
Sadollah, Ardeshir Bahreininejad Elsevier

[45] 2012
Comparative Performance Analysis of 
Artificial ABC Algorithm in Automatic
Generation Control

Haluk Gozde, M. Cengiz 
Taplamacioglu and illah Kocaarslan Elsevier

[46] 2011
Automated Generation of Independent 
Paths and Test Suite Optimization Using
Artificial Bee Colony

Soma Sekhara Babu Lam
and M L Hari Prasad Raju Elsevier

[47] 2012
The Further Research on the Application of 
ABC to the Optimization and Control of
Project

Cui Qiao and Hengshan Wang
Canadian Center
of Science and
Education

[48] 2007
Artificial Bee Colony Algorithm and Its 
Application to Generalized Assignment
Problem

Adil Baykaso? lu, Lale Özbakır and 
Pınar Tapkan N/M

[49] 2010 Application of Artificial Bee Colony
Algorithm to Software Testing

Surender Singh Dahiya, Jitender 
Kumar Chhabra and Shakti Kumar IEEE

[50] 2011 Search-Based Software Testing: Past, 
Present and Future Phil McMinn IEEE

[51] 2012 Overview of Artificial Bee Colony (ABC)
Algorithm and Its Applications

Fahad S. Abu-Mouti and Mohamed 
E. El-Hawary IEEE

[52] 2012
A Discrete Artificial Bee Colony Algorithm 
for the Traveling Salesman Problem with 
Time Windows

Korhan Karabulut and M. Fatih 
Tasgetiren IEEE

[53] 2011 A Survey of Combinatorial Testing Changhai Nie	 Hareton Leung ACM

[54] 2012 A Comprehensive Survey: Artificial Bee 
Colony (ABC) Algorithm and Aplications

Dervis Karaboga, Beyza
Gorkemli and Celal Ozturk Springer

[55] 2007
A Powerful and Efficient Algorithm for 
Numerical Function Optimization: (ABC)
algorithm

Dervis Karaboga and Bahriye 
Basturk Springer

[56] 2009 A Comparative Study of Artificial Bee 
Colony Algorithm

Dervis Karaboga and Bahriye 
Basturk Elsevier

[57] 2011 A Survey on the Applications of Bee Colony 
Optimization Techniques Dr. Arvinder Kaur and Shivangi Goyal IJCSE

[58] 1995 Removing	 the	 Genetics	 from	
the Standard Genetic Algorithm Shumeet Baluja and Rich Caruana

[59] 2009 ABC Tester - Artificial Bee Colony Based 
Software Test Suite Optimization Approach D. Jeya Mala and V. Mohan IJCSE

[60] 2012
Hybrid Harmony Search and ArtificialBee 
Colony Algorithm for Global Optimization 
Problems

Bin Wu, Cunhua Qian, Weihong Ni 
and Shuhai Fan Elsevier

Table 3. Survey on bee colony approach in automated software testing.
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[61] 2012 Artificial Bee Colony Programming for
Symbolic Regression

Dervis Karaboga, Celal Ozturk, 
Nurhan Karaboga and Beyza 
Gorkemli

Elsevier

[62] 2011 Collaborative Artificial Bee Colony
Optimization Clustering Using SPNN D.Shanthi and R.Amalraj Elsevier

[63] 2011 Nature Inspired Cooperative Strategies for 
Optimization (NICSO 2011)

David Alejandro
Pelta,Natalio Krasnogor, Dan 
Dumitrescu

Springer

[64] 2012

Artificial Bee Colony Algorithm	
with
Improved Explorations for	
Numerical
Function Optimization

Mohammad Shafiul Alam,
Md. Monirul Islam and
Kazuyuki Murase

Springer

Generate init ial population

Perform crossover

Perform mutation

Stopping
criteria

satisfied

End

Insert offspring into population

Select individual from
population for mating

Figure 3: Flowchart of a simple genetic algorithm.
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Ref  No Pub. year Topic Author Published in.

[65] 2011
Diversity oriented test data 
generation using Metaheuristics 
search techniques

Paulo M.S. Bueno , Mario 
Jino, W. Eric
Wong

Elsevier

[66] 2006
Automatic test data generation 
using genetic algorithm and program 
dependence graphs

James Miller, Marek
Reformat, Howard
Zhang

Elsevier

[67] 2009 Application of Genetic Algorithm in 
Software Testing

Praveen Ranjan
Srivastava and Tai- hoon 
Kim

International Journal of
Software Engineering and Its 
Applications

[68] 2010
Using Genetic Algorithms and 
Dominance Concepts for Generating 
Reduced Test Data

Ahmed S. Ghiduk
Moheb R. Girgis Informatica

[69] 2009
Eccentric Test Data Generation 
for Path Testing Using Genetic 
Algorithm

Punam Mishra,
Bhabani Shankar
Prasad Mishra

International
Conference on Computer 
Engineering and Applications

[70] 2004 Search-based software test data 
generation: a survey Phil McMinn

Software
Testing, verification and 
reliability

[71] 2007
Automatic software test data 
generation for spanning sets 
coverage using genetic algorithms

Abdelaziz M.
Khamis,Moheb R. 
Girgis,Ahmed S. Ghiduk

Computing and
Informatics,

[72] 1996
Automatic structural testing using 
genetic
algorithms

B. F. Jones, H.-H.
Sthamer and D. E. Eyres

Software Engineering
Journal

[73] 1997 Genetic Algorithms for Dynamic Test 
Data Generation

Christoph C.
Michael, Gary E. McGraw, 
Michael A. Schatz ,Curtis 
C. Walton

IEEE

[74]
Automated Software Test Data 
Generation for
Complex Programs

Christoph Michael &
Gary McGraw Not mentioned

[75] 2000 Using Genetic Algorithms for Test 
Case Generation in Path Testing

Jin-Cherng Lin and
Pu-Lin Yeh IEEE

[76] 2001 Generating Software Test Data by 
Evolution

Christoph C. Michael, 
Gary McGraw,Michael A. 
Schatz

IEEE Transactions on Software
Engineering

[77] 2002 Breeding Software Test Cases with 
Genetic Algorithms

D. Berndt, J. Fisher,
L. Johnson, J. Pinglikar, 
and A. Watkins

Proceedings of the
36th Hawaii International 
Conference on System Sciences 
(IEEE)

[78] 2004
Investigating the Performance of 
Genetic Algorithm-Based Software 
Test Case Generation

Donald J. Berndt and
Alison Watkins

Proceedings of the
Eighth IEEE International 
Symposium on High Assurance 
Systems Engineering

[79] 2003 Genetic Algorithm Based Test Data 
Generator

Irman Hermadi AND
Moataz A. Ahmed IEEE

[80] 2004

Using a Genetic Algorithm and 
Formal Concept Analysis to 
Generate Branch Coverage Test 
Data Automatically

Susan Khor and
Peter Grogono

Proceedings of the
19th International Conference 
on Automated Software 
Engineering

[71] 2008
Automatic Path-oriented Test Data 
Generation Using a Multi-population 
Genetic Algorithm

Yong Chen and
Yong Zhong

Fourth International
Conference on Natural
Computation (IEEE)

2012
A Concept of Out Degree in CFG for 
Optimal
Test Data Using Genetic Algorithm

Shadab Irfan and
Prabhat Ranjan

1st Int’l Conf. on
Recent Advances in Information 
Technology (IEEE)

Table 4. Survey on genetic algorithm approach in automated software testing.
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2. Conclusion

In this paper we analyze scope of research that can 
be carried out in computer science especially in field 
of software testing using nature inspired algorithms 
such as ACO, ABC AND GA. From the survey we 
conclude that during the last few decades there has 
been a significant change in testing approaches. 
Metahurestic approaches are slowly replacing the 
Manual and traditional testing activities. We have 
a strong observation that these nature inspired 
algorithms are not only useful on computer science 
but also in other related filed such as electronics 
(making optimized control flow, load balancing, circuit 
optimization and related optimization problems) 
and biology such as protein folding prediction. Thus 
metahurestic is growing area for research and is open 
to carry out new researches. We have observed 
that researchers are moving from traditional 
algorithms to natural inspired algorithms in solving 
NP hard problems.
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