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Abstract

In the study of fluid transport in biological organisms,
we deal with the flow between permeable walls that
may expand or contract, this type of flow has a great
importance in medical and biological sciences. In this
article, the laminar flow of an incompressible viscous
fluid is considered in a semi-infinite rectangular
domain. It is bounded by two moving porous
walls that enable the fluid to enter or exit during
successive contractions or expansions. The solution
of the problem is approximated by using Variation
of Parameters Method (VPM). To investigate the
effect of non-dimensional wall expansion/contraction
rate a, and permeation Reynolds number R, on the
flow field, the graphical results are presented. A
couple of graphs, highlighting the effects of involved
parameter on the normal pressure distribution, are
also included. The analytical solution obtained by
(VPM) is also supported by numerical results and
both show an excellent agreement. A comparison
among the current solution and some already
existing solutions is also presented. The study of
the flow between dilating or squeezing porous walls
is drastic simplification of the transport of biological
fluids through dilating or squeezing vessels.
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1. Introduction

In biological fluid transport, the flow through
expanding and contracting porous vessels is a
common phenomenon. Its vital importance in many
parts of synthetic respiratory systems, artificial
circulatory systems and several industrial processes
is also an established fact. Therefore, its study has
attracted many researchers from all over the world
and they have contributed their work in this regard.

The pioneer work concerning the steady flow
solutions in channels with porous boundaries has
been done by Berman [1]. He introduced a method
to reduce Navier Stokes equations into a single
ordinary differential equation on the basis of the
assumption that the suction or injection through the
porous bodies is uniform. His study opened a new
door for many researchers who later worked on the
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guidelines provided by him.

Goto and Uchida [2] discussed the effect of viscosity
and pressure distribution as well as the effect of
wall contraction and realistic length of the body.
Governing equations were reduced to a single
ordinary differential equation by using similarity
transform in time and space. Majdalani [3,4] studied
the viscous flow driven by small wall contractions and
expansions of two weakly permeable walls by using
the same similarity transformation.

Boutros et al. [5] presented Lie-group method solution
for two-dimensional viscous flow inside a rectangular
domain with slowly expanding or contracting weakly
permeable walls. Lie-group method has been applied
to reduce the governing partial differential equation
by determining reduction symmetric transforms.
Many other studies have also been carried out to
determine more accurate and easier methods to
compute solutions. Mahmood et al. [6] and Asghar et
al. [7] have considered the same problem and have
done some improvements to the solutions obtained
by previous authors.

Upon the aforementioned studies, the present work
discusses a more reliable, accurate and feasible
solution. We consider an incompressible, laminar,
isothermal flow inside a channel having infinite length
and use the so called exact similar transform in both
space and time to reduce the governing equation
of the flow and then solve it with a very effective
technique called variation of parameters method
(VPM) and it is observed that the results obtained by
the VPM are more accurate and provide such results
which are nearer to numerical simulation. Visibly low
percentage error is observed compared to the works
done by Majdalani et al. [4] and Boutros et al. [5].
One may also observe from our work that the VPM
is less laborious and gives more accurate results as
compared to methods previously used. It also does
not require imposing assumption of weak permeable
walls which was necessary in many prior studies

2. Formulation of the Problem

In this study, laminar, incompressible and isothermal
flow is considered in a rectangular duct of infinite
length [8], which contains two permeable walls, from
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where the fluid can enter or exit during successive
expansions/contractions. The aspect ratio of the
width W to the height 2a of the duct is taken to be
sufficiently large so that the effect of lateral walls can

4) [91.

The head end of the duct is closed with an impermeable,
solid membrane that is capable to expand or contract
with the dilating or squeezing walls. Due to the higher
aspect ratio between the height and the width of the
duct we can confine the whole problem to half domain
and a plane cross section of the simulated domain as
shown in Figure 1.

be ignored; it is normally taken as (% >

da

T

F”f”f?"ff”f”

Flgure 1. Two-dimensional domain with expandlng or
contracting porous walls.

Both walls are assumed to have equal permeability
and to expand uniformly at a time dependent rate

i (=

and at the walls the suction or injection velocity —V,,
is assumed to be independent of position. This

”K’I—f) . The flowis only due to suction or injection,

enables us to assume flow symmetry about y=0.
The auxiliary conditions for this problem are specified
as

ﬁ()%, a)=0, 9(a)=—vw =—4, (1)
%(%,0)=0, (% 0)=0, (0, )=0 (2)

1and v here are the velocity components in X and
¥ -directions, respectively, and ¢ is the suction

coefficient which is the measure of wall porosity
[2]. For two dimensional, unsteady, incompressible
viscous fluid, the equations of continuity and
momentum in component form are

ou (9

(FZ + Y 0, (3)
aﬁ 6”’\ 512 p— 1 Eﬁ 6’ u O u

v ol 0\3 j— 1 Ep 0 V O v

p, P, v and ¢ are the dimensional pressure, density,
kinematic viscosity and time, respectively.
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We can simplify the above system of equations by
eliminating the pressure terms from, Eqgs. (4) and
(5). After cross differentiation, using Eq. (3), and
introducing vorticity @ we get

Zrilrii=v(Ze+2z)
: (6)
with,
_(ov _ aa
o=(5-3) @)

Due to the conservation of mass, a similar solution
can be developed with respect to x as follows,

V=—vaF(y, t) (8)

.
where, F represents %

y oy

_ a2
y=yla, u=via“F,

Using Eq. (8) in Eq. (7), we get
w=-viaF (9)
Substituting Eq. (9) in Eq. (6), we obtain

U A 4 T A -3 2A -5 1
3vxa aFW+Vm ayFw vxa Fyy[ vxa Fy]i,y+
28 S 25 57
ViXa“FF, =-v'xa”F,

A careful simplification leads to,

Fﬂy‘+a(3F +yFw) F;F”+ Wy_aTF;yt:o (10)
while, a(f)=4% a is non-dimensional wall

expansion or contraction rate, taken to be positive
for expansion.

The auxiliary conditions can also be transformed as

F,(0)=0,F(0)=0,F,(1)=0,F (1) =R (11)
R, here is the permeation Reynolds number defined
as p=%;itis taken to be positive for injection.

We can now obtain p —oby setting a to be a
constant or a quasi- -constant in time [3]. The value of
the expansion ratio ain this case can be specified by
its initial value

o = o= (12)

v v 2

where, a, and a, =", represent the initial channel
height and expansion rate, respectively.

Integrating, Eq. (12), with respect to time; a similar
solution for temporal channel altitude evolution can
be determined and is given by

“(’) (1+2vata0) (13)

3. Dimensionless form of the Governing
Equations

Eq. (8), Eq. (10) and Eq. (11) can be made non-
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dimensional by introducing  non-dimensional
parameters

i v % F
u=-, v=—, xX=—, F=—.

a a a R

Using the transformation, we have

u:va/c, v=-F/c, c=alR,

Substituting, F :%, in Egs. and we get

F*+a(yF +3F )+RFF —RF F =0 (14)
F'(0)=0, F(0)=0,F'(1)=0,F()=1 (15)

where, ‘ denotes differentiation with respectto y .

We solve Eq. (14) subject to the boundary conditions,
provided in Eq. (15), using Variation of Parameters
Method (VPM) which has been employed
successfully to determine the solution of several
research problems [10-13].

4. Variation of Parameters Method

To illustrate the basic concept of the variation of
parameters method for differential equations, we
consider the following general differential equation in
operator form

Lu(x)+Nu(x)+Ru(x)=g(x), (16)
where, L is the highest order linear operator, Ris the
linear operator of order less than L, N is the nonlinear

operator, and g is the source term. We have the
following general solution of equation

u(x) = %2 = [32(x.5)(g(s)~ Nu(s) - Ru(s))  (17)
where, n is the order of given differential equation

and 4s is are the unknowns that can be determined
by using the supporting initial/lboundary conditions.

Moreover, 4(x,s) is the multiplier and it is used for
the reduction of the order of the integration; it can
be determined with the help of Wronskian technique.
For different values of order n, one can easily obtain
the following values of the multiplier.

n=1, A(x,s) =1,
n=2, Ax,s)=x-s,

n=3, A(x,s)= ——xs+‘

21

: (18)
The Eq. (17) leads us to an iterative scheme that is
given as

Ui (x)= ?:_ol%xi —Igﬂ(x,s)
(g(s)—Nuk(s)—Ruk(s)), k=0,1,2,? (19)

The above iterative algorithm provides us the solution
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of the differential equation, with sufficient auxiliary
conditions, at different levels of iterations. The terms
outside the integral, provides us with the initial guess
and its presence in all the iterations gives us a better
approximation.

5. Application of VPM to the Problem

Following the guidelines provided in above section,
Eq. (14) gives us the following iterative scheme,

Fa()=4+4,y+A4,5+4, %_Io(?_%+%_§7)

(@(sF, (9)+3F, (s)+RE,(9)F, (s)=RF, (s)F, (5))ds

with n=0,1,2,3?
Utilizing the boundary conditions given in Eq. (15),
we have 4, =0, 4, =0. Moreover, by

setting 4, = A, ,and 4, = B, Eq. (20) leads us to,

Fa()= Ay + BE (5 -5+ 5 -5

o (21)
+(@(sF, (5)+3F, () + RE,(5)F, ()= RF, (5)F, (s))ds,

First two iterations of the solution are given as

F(y)= 2520R32y7+(—%a3)y +23° + 4y
F, (7) = zaredsaoss R°B*V" + (- tezismos R B°a) 1
+( sioss05 B*R? + 15555 Ra*B ) y

+(— 2 aRB? — 5545 AR?B?) y°
+(2+0a2B+m - ) 7
+(—%aB)y* +L£y> + Ay (22)

As we have found the pivotal variable F, the normal
pressure distribution can be expressed as a function
of F. The desired expression can be obtained by

substituting Eq. (8) into the Eq. (5) and using F' =
The consequent result is as follows

p,=—[R'F +FF +aR*(F+yF)], (23

Where =p/(pv’)denotes the dimensionless
pressure. The normal pressure distribution now can
readily be determined by integrating Eqn. (23) with

respect to y and letting p. to be the central line
pressure.

["Vdp=[;~[R™F +FF +aR™(F+yF )ldy (24)
After a careful manipulation, we get

Apn=RF (0)-(R*F | +%F2 +aR*yF  (25)
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which is the expression for the normal pressure
distribution Ap,, .

6. Results and Discussion

After the successful determination of F; we can
find the other flow characteristic in terms of F. The
graphical representation of the flow behavior is
an easy way to see the effects of different flow

Figure 2. Effects of wall deformation rate on axial velocity
in case of injection.

Figure 3. Effects of wall deformation rete on axial velocity
in case of suction.

parameters on the flow field; the figures to follow are
displayed for the same purpose. Over the range of
non-dimensional wall expansion/contraction rate a,
Figures 2 and 3, show the behavior of axial velocity, F’
(or uc/x, for the permeation Reynolds numbers, R=3
and R=-3 , respectively. It can clearly be seen with
increasing value of , the expansion (« > 0) combined
with, suction or injection, delays the flow near the
walls; however it rises the fluid’s velocity near the
centreline of the channel. In fact, the expansion of
the walls creates a space nearby; to fill it, the fluid in
the vanicity moves in; in a result, a delayed axial flow
near the walls is as expected. The phenomenon is
least dominant near the center, so the conservation
of mass ensures an increased axial flow there.

On the other hand, when the contraction (« > 0) is
combined with suction or injection, the increasing
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absolute value of a decrease the axial velocity near
the walls; however, at the center, the behavior is
opposite and an accelerated flow is observed for
increasing |a|. The contraction hinders the axial flow
near the walls and hence a velocity-drop there is
expected. Moreover, it leads to a heavier flow near
the center and hence an accelerated flow near the
center is also logical. From the same figures it can
be concluded that the deviations in the velocity are
more prominent in the case of suction (R=-3). The
maximum of the velocity lies near the center in all
these cases; it decreases with increasing expansion
and does the otherwise for increasing contraction.

-1.0 i : ; 1.0

Figure 4. Effects of permeation Reynolds number on
axial velocity in case of expansion.

a=-2.5

1.4
1.2
1.0
0.8
=
L 0.6
0.4
0.2

0.0
-1.0

1.0

Figure 5. Effects of permeation Reynolds number on
axial velocity in case of contraction.

Figures 4 and 5 show the behavior of axial velocity

F' (oruc/x) overthe range of permeation Reynolds
numbers R; the wall deformation rate is taken to be
a=25 and o =-25 , respectively. Figure 4 depicts,
in case of expansion, the increasing R leads to a
decelerated flow near the walls and acceleration
near the centerline of the channel. Figure 5 on the
other hand shows a quite opposite behavior, in
case of contraction, there is a slight increase in the
velocity near the walls with increasing R and near the
centerline the same decrease. It can also be seen
that these two figures affirm the results obtained in
Figures 2 and 3.
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To support our analytical work future, we have solved
Eq. (14) with Eq. (15) numerically by using the
shooting method combined with fourth order Runge-
Kutta scheme. A comparison between the numerical
solution and the purely analytical solution, obtained
by VPM, is presented in Figures 6 and 7. The
solution is given for the axial velocity for the cases

ﬂ':U.S:RZS
15¢
10}
=
0.5
Numericzsl
VEML
0.0F
-1.0 -0.35 0.0 05 1.0

Figure 6. Comparison between numerical and analytical
solution (expansion/injection).

G’:—U.iR:S

MNumerical

Figure 7. Comparison between numerical and analytical
solution (contraction/injection).

of contraction combined with injection (Figure 6) and
the expansion coupled with injection (Figure 7). It is
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evident from the figures that the solution obtained by
VPM has a remarkable agreement with the numerical
solution. Numerical values for the velocity profile are
given in Tables 1 and 2.

The effects of varying a, on the normal pressure
distribution (Apn), are highlighted in the next two
figures. The value of R is taken to be -2 and 2,
respectively. It can be observed for every level of
suction or injection that the absolute change in Apn
is the lowest near the central region. For suction,
|Apn| increases with increasing contraction as well as
expansion. The most deviant behavior is observed
near the walls of the channel. On the other hand, for
injection, the pressure drop increases with increasing
expansion; in the same case, it decreases with
increasing contraction.

7. Conclusion

In this work we have examined an isothermal laminar
flow of a viscous incompressible fluid in a rectangular
domain bounded by two moving permeable walls. We
have used Variation of Parameters Method (VPM) to
approximate the solution for the equations governing
the fluid flow. It is clear from our work that VPM can
successfully be applied to highly nonlinear equations
like the one we have and the results obtained
are encouraging. The results bear a remarkable
resemblance with the numerical solution as well as
some of the already existing ones. The effects of
different flow parameter on the flow behavior are
shown with the help of graphs. The purpose of this
study is to improve the work done by the previous
researchers and it can be seen that we have applied
such a technique that is less laborious and flexible to
apply yet it gives quite accurate results. As the flow
between the expanding/contracting porous walls is
a basic model for understanding the complex fluid
motion involved in bio-fluid mechanics and other
branches of science, hence, this work can help to
understand those flow behaviors in more accurate
and flexible way.

Table 1. Comparison among numerical, VPM, Majdalani et al. [3] and Boutros et al. [5] solutions for axial velocity a=0.5

and R=5.0.

y VPM Numerical [4]

0 1.557560 1.559473 1.536002
0.1 1.539048 1.540888 1.519377
0.2 1.483882 1.485503 1.469505
0.3 1.393173 1.394434 1.386445
0.4 1.268770 1.269540 1.270464
0.5 1.113244 1.113402 1.122275
0.6 0.929856 0.929302 0.943364
0.7 0.722502 0.721169 0.736373
0.8 0.495575 0.493513 0.505538
0.9 0.253585 0.251330 0.257149

1 0 0 0

ISSN 1860-3122

[5] %error(VPM)  %error [4] %error [5]
1.556324 0.122669 1.515606 0.212613
1.538164 0.119411 1.396013 0.176781
1.483935 0.109121 1.076941 0.105553
1.394421 0.090430 0.572920 0.000932
1.271006 0.06065 0.072782 0.115474
1.115778 0.014190 0.796926 0.213400
0.931656 0.059614 1.513178 0.253308
0.722523 0.184838 2.108243 0.187750
0.493322 0.417820 2.436612 0.038702
0.250109 0.897226 2.315282 0.485815

0 0 0 0
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Table 2. Comparison among numerical, VPM, Majdalani et al. [3] and Boutros et al. [5] solutions for axial velocity a=-0.5 and R=5.0.

y VPM Numerical [4]

0 1.557560 1.559473 1.536002
0.1 1.539048 1.540888 1.519377
0.2 1.483882 1.485503 1.469505
0.3 1.393173 1.394434 1.386445
0.4 1.268770 1.269540 1.270464
0.5 1.113244 1.113402 1.122275
0.6 0.929856 0.929302 0.943364
0.7 0.722502 0.721169 0.736373
0.8 0.495575 0.493513 0.505538
0.9 0.253585 0.251330 0.257149

1 0 0 0
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