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Abstract
In the study of fluid transport in biological organisms, 
we deal with the flow between permeable walls that 
may expand or contract, this type of flow has a great 
importance in medical and biological sciences. In this 
article, the laminar flow of an incompressible viscous 
fluid is considered in a semi-infinite rectangular 
domain. It is bounded by two moving porous 
walls that enable the fluid to enter or exit during 
successive contractions or expansions. The solution 
of the problem is approximated by using Variation 
of Parameters Method (VPM). To investigate the 
effect of non-dimensional wall expansion/contraction 
rate 𝛼, and permeation Reynolds number 𝑅, on the 
flow field, the graphical results are presented. A 
couple of graphs, highlighting the effects of involved 
parameter on the normal pressure distribution, are 
also included. The analytical solution obtained by 
(VPM) is also supported by numerical results and 
both show an excellent agreement. A comparison 
among the current solution and some already 
existing solutions is also presented. The study of 
the flow between dilating or squeezing porous walls 
is drastic simplification of the transport of biological 
fluids through dilating or squeezing vessels.
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1. Introduction
In biological fluid transport, the flow through 
expanding and contracting porous vessels is a 
common phenomenon. Its vital importance in many 
parts of synthetic respiratory systems, artificial 
circulatory systems and several industrial processes 
is also an established fact. Therefore, its study has 
attracted many researchers from all over the world 
and they have contributed their work in this regard.

The pioneer work concerning the steady flow 
solutions in channels with porous boundaries has 
been done by Berman [1]. He introduced a method 
to reduce Navier Stokes equations into a single 
ordinary differential equation on the basis of the 
assumption that the suction or injection through the 
porous bodies is uniform. His study opened a new 
door for many researchers who later worked on the 

guidelines provided by him.

Goto and Uchida [2] discussed the effect of viscosity 
and pressure distribution as well as the effect of 
wall contraction and realistic length of the body. 
Governing equations were reduced to a single 
ordinary differential equation by using similarity 
transform in time and space. Majdalani [3,4] studied 
the viscous flow driven by small wall contractions and 
expansions of two weakly permeable walls by using 
the same similarity transformation.

Boutros et al. [5] presented Lie-group method solution 
for two-dimensional viscous flow inside a rectangular 
domain with slowly expanding or contracting weakly 
permeable walls. Lie-group method has been applied 
to reduce the governing partial differential equation 
by determining reduction symmetric transforms. 
Many other studies have also been carried out to 
determine more accurate and easier methods to 
compute solutions. Mahmood et al. [6] and Asghar et 
al. [7] have considered the same problem and have 
done some improvements to the solutions obtained 
by previous authors.

Upon the aforementioned studies, the present work 
discusses a more reliable, accurate and feasible 
solution. We consider an incompressible, laminar, 
isothermal flow inside a channel having infinite length 
and use the so called exact similar transform in both 
space and time to reduce the governing equation 
of the flow and then solve it with a very effective 
technique called variation of parameters method 
(VPM) and it is observed that the results obtained by 
the VPM are more accurate and provide such results 
which are nearer to numerical simulation. Visibly low 
percentage error is observed compared to the works 
done by Majdalani et al. [4] and Boutros et al. [5]. 
One may also observe from our work that the VPM 
is less laborious and gives more accurate results as 
compared to methods previously used. It also does 
not require imposing assumption of weak permeable 
walls which was necessary in many prior studies  

2. Formulation of the Problem
In this study, laminar, incompressible and isothermal 
flow is considered in a rectangular duct of infinite 
length [8], which contains two permeable walls, from 
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where the fluid can enter or exit during successive 
expansions/contractions. The aspect ratio of the 
width W to the height 2𝑎  of the duct is taken to be 
sufficiently large so that the effect of lateral walls can 

be ignored; it is normally taken as ( )2 4W
a >  [9]. 

The head end of the duct is closed with an impermeable, 
solid membrane that is capable to expand or contract 
with the dilating or squeezing walls. Due to the higher 
aspect ratio between the height and the width of the 
duct we can confine the whole problem to half domain 
and a plane cross section of the simulated domain as 
shown in Figure 1.

Both walls are assumed to have equal permeability 
and to expand uniformly at a time dependent rate  

( )da
dta = . The flow is only due to suction or injection, 

and at the walls the suction or injection velocity wv−  
is assumed to be independent of position. This 

enables us to assume flow symmetry about ŷ =0 . 
The auxiliary conditions for this problem are specified 
as

( ) ( )ˆ ˆ ˆ, , ,a
w cu x a v a v= = − = − 0 		                (1)

( ) ( ) ( )ˆ
ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,u
y x v x u y∂
∂ = = =0 0 0 0 0 0                  (2)

û and v̂  here are the velocity components in x̂  and 

ŷ -directions, respectively, and c  is the suction

coefficient which is the measure of wall porosity 
[2]. For two dimensional, unsteady, incompressible 
viscous fluid, the equations of continuity and 
momentum in component form are

ˆ ˆ
ˆ ˆ ,u v
x y
∂ ∂
∂ ∂+ =0  				                       (3)

( )ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ,pu u u u u
t x y x x y

u v ρ ν∂∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +2 2

2 2
1                   (4)

( )ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ,pv v v v v
t x y y x y

u v ρ ν∂∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +2 2

2 2
1                 (5)

 p̂ , ρ , ν  and t  are the dimensional pressure, density, 
kinematic viscosity and time, respectively.

We can simplify the above system of equations by 
eliminating the pressure terms from, Eqs. (4) and 
(5). After cross differentiation, using Eq. (3), and 
introducing vorticity ω  we get

 
( )ˆ ˆ ˆ ˆ

ˆ ˆt x y x y
u vω ω ω ω ων∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
+ + = +2 2

2 2

                              (6)

 with,

 
( )ˆ ˆ

ˆ ˆ
v u
x yω ∂ ∂
∂ ∂= −

 		                                              
(7)

Due to the conservation of mass, a similar solution 
can be developed with respect to x̂  as follows,

ˆ ˆˆ ˆ ˆ ˆ/ , , ( , )yy y a u xa F v a F y tν ν− −= = = −2 1                  (8)

where, ˆ
yF  represents  F̂

y
∂
∂  

 Using Eq. (8) in Eq. (7), we get

ˆˆ yyxa Fω ν −= − 3  			                  (9)

Substituting Eq. (9) in Eq. (6), we obtain

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ

ν ν ν ν

ν ν

− − − −

− −

+ − − +

= −

 yy yyy yyt y yy

yyy yyyy

xa aF xa ayF xa F xa F F

xa FF xa F

4 4 3 2 5

2 5 2 5

3

A careful simplification leads to,

( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆa
yyyy yy yyy y yy yyy yytF F yF F F FF Fνα+ + − + − =2

3 0
               (10)

while, ( ) aat να =   𝑎 is non-dimensional wall 
expansion or contraction rate, taken to be positive 
for expansion. 

The auxiliary conditions can also be transformed as

ˆ ˆ ˆ ˆ(0) 0, (0) 0, (1) 0, (1)yy yF F F F= = = = R 		                
 (11)

𝑅, here is the permeation Reynolds number defined 
as  wavR ν= ; it is taken to be positive for  injection.

We can now obtain ˆ
yytF =0by setting 𝛼 to be a 

constant or a quasi-constant in time [3]. The value of 
the expansion ratio 𝛼in this case can be specified by 
its initial value

 0 0 ,a aaa
ν να = =   				                  (12)

where, 0a  and 0
0

da
dta =  , represent the initial channel 

height and expansion rate, respectively.

Integrating, Eq. (12), with respect to time; a similar 
solution for temporal channel altitude evolution can 
be determined and is given by

( )
0

( )
0

a t
a taνα −= + 21 2  			                   (13)

3. Dimensionless form of the Governing 
Equations
Eq. (8), Eq. (10) and Eq. (11) can be made non-

Figure 1. Two-dimensional domain with expanding or 
contracting porous walls.
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dimensional by introducing non-dimensional 
parameters

ˆˆ ˆ ˆ
, , , .u v x Fu v x F

a a a R
= = = =
 

Using the transformation, we have

/ , / , / ,u xF c v F c c Rα
′

= = − =

Substituting, F̂
RF = , in Eqs. and we get

( )ivF yF F RFF RF Fα
′′′ ′′ ′′′ ′ ′′

+ + + − =3 0  	             (14)

(0) 0 (0) 0, (1) 0, (1) 1F F F F′′ = = ′ = =,  	               (15)

where, ′ denotes differentiation with respect to y .

We solve Eq. (14) subject to the boundary conditions, 
provided in Eq. (15), using Variation of Parameters 
Method (VPM) which has been employed 
successfully to determine the solution of several 
research problems [10-13].

4. Variation of Parameters Method
To illustrate the basic concept of the variation of 
parameters method for differential equations, we 
consider the following general differential equation in 
operator form

( ) ( ) ( ) ( ) ,Lu x Nu x Ru x g x+ + =  	              (16)

where, 𝐿 is the highest order linear operator, 𝑅is the 
linear operator of order less than 𝐿, 𝑁 is the nonlinear 
operator, and 𝑔 is the source term. We have the 
following general solution of equation

( ) ( ) ( )( )1
0 ! 0( ) , ( )i xA in

i iu x x x s g s Nu s Ru sλ−
== − − −∑ ∫      (17)

where, 𝑛 is the order of given differential equation 
and iAs  is  are the unknowns that  can be determined 
by using the supporting initial/boundary conditions. 
Moreover, ( ),x sλ  is the multiplier and it is used for 
the reduction of the order of the integration; it can 
be determined with the help of Wronskian technique. 
For different values of order 𝑛, one can easily obtain 
the following values of the multiplier.

                                     

2 2

2! 2!

1, ( , ) 1,
2, ( , ) ,
3, ( , ) ,x s

n x s
n x s x s
n x s xs

λ
λ
λ

= =
= = −
= = − +

   (18) 
The Eq. (17) leads us to an iterative scheme that is 
given as

( ) ( )
( ) ( ) ( )( )

1
01 ! 0 ,

, 0,1, 2,?

λ−
=+ = −∑ ∫

− − =

i xA in
ik i

k k

u x x x s

g s Nu s Ru s k                (19)

The above iterative algorithm provides us the solution 

of the differential equation, with sufficient auxiliary 
conditions, at different levels of iterations. The terms 
outside the integral, provides us with the initial guess 
and its presence in all the iterations gives us a better 
approximation.

5. Application of VPM to the Problem
Following the guidelines provided in above section, 
Eq. (14) gives us the following iterative scheme,

( )
( )

! ! ! !0( )

( ( ) ( )) ( ) ( ) ( ) ( ) ,

yy y y y s ys s
n

n n n n n n

F y A A y A A

sF s F s RF s F s RF s F s dsα
′′′ ′′ ′′′ ′ ′′

+ = + + + − − + −∫

+ + −

2 3 3 2 2 3

1 1 2 3 42 6 3 2 2 3

3
(20)

with 0,1,2,3?n =  

Utilizing the boundary conditions given in Eq. (15), 

we have ,A A= =1 30 0 . Moreover, by

setting ,A A=2 , and A B=4 , Eq. (20) leads us to,

( )
( )

! ! ! !0( )

( ( ) ( )) ( ) ( ) ( ) ( ) ,α
′′′ ′′ ′′′ ′ ′′

+ = + − − + −∫

+ + + −

yy y y s ys s
n

n n n n n n

F y Ay B

sF s F s RF s F s RF s F s ds

3 3 2 2 3

1 6 3 2 2 3

3
(21)

First two iterations of the solution are given as

( ) ( ) BF y RB y B y y Ayα= + − + +2 7 5 31 1
1 2520 30 6

( ) ( )1F y R B y R B yα= + −3 4 15 2 3 131
2 2476656000 16216200

( )B R R B yα+ − +3 2 2 2 111 1
2494800 178200

( )RB AR B yα+ − −2 2 2 91 1
11340 45360

( )B RA B RB yα α+ + +2 2 71 1 1
210 630 2520

( ) BB y y Ayα+ − + +5 31
30 6                                                             (22)

 As we have found the pivotal variable 𝐹, the normal 
pressure distribution can be expressed as a function 
of 𝐹. The desired expression can be obtained by 
substituting Eq. (8) into the Eq. (5) and using F̂

RF = . 
The consequent result is as follows

[ ( )],yp R F FF R F yFα
′′ ′ ′− −= − + + +1 1       (23)

Where ˆ / ( )wp p vρ= 2 denotes the dimensionless 
pressure. The normal pressure distribution now can 
readily be determined by integrating Eqn. (23) with 

respect to y  and letting cp  to be the central line 
pressure.

( )
0 [ ( )]

c

p y y
p dp R F FF R F yF dyα

′′ ′ ′− −= − + + +∫ ∫ 1 1    (24)

After a careful manipulation, we get

( ) ( ) 210
2

pn R F R F F R yFα
′ ′− − −∆ = − + +1 1 1

      (25)



Electronic Journal of Biology, 2016, Vol.12(4): 314-319

ISSN 1860-3122 - 317 -

which is the expression for the normal pressure 
distribution np∆ .

6. Results and Discussion
After the successful determination of 𝐹; we can 
find the other flow characteristic in terms of 𝐹. The 
graphical representation of the flow behavior is 
an easy way to see the effects of different flow 

parameters on the flow field; the figures to follow are 
displayed for the same purpose. Over the range of 
non-dimensional wall expansion/contraction rate 𝛼, 
Figures 2 and 3, show the behavior of axial velocity, F' (or uc/x, for the permeation Reynolds numbers, 𝑅=3 
and 𝑅=−3 , respectively. It can clearly be seen with 
increasing value of 𝛼, the expansion (α > 0) combined 
with, suction or injection, delays the flow near the 
walls; however it rises the fluid’s velocity near the 
centreline of the channel. In fact, the expansion of 
the walls creates a space nearby; to fill it, the fluid in 
the vanicity moves in; in a result, a delayed axial flow 
near the walls is as expected. The phenomenon is 
least dominant near the center, so the conservation 
of mass ensures an increased axial flow there.

On the other hand, when the contraction (α > 0) is 
combined with suction or injection, the increasing 

absolute value of 𝛼 decrease the axial velocity near 
the walls; however, at the center, the behavior is 
opposite and an accelerated flow is observed for 
increasing |𝛼|. The contraction hinders the axial flow 
near the walls and hence a velocity-drop there is 
expected. Moreover, it leads to a heavier flow near 
the center and hence an accelerated flow near the 
center is also logical. From the same figures it can 
be concluded that the deviations in the velocity are 
more prominent in the case of suction (𝑅=−3). The 
maximum of the velocity lies near the center in all 
these cases; it decreases with increasing expansion 
and does the otherwise for increasing contraction.

Figures 4 and 5 show the behavior of axial velocity 
(F ′ or / )uc x   over the range of permeation Reynolds 

numbers 𝑅; the wall deformation rate is taken to be 
.α = 2 5 and .α = −2 5 , respectively. Figure 4 depicts, 

in case of expansion, the increasing 𝑅 leads to a 
decelerated flow near the walls and acceleration 
near the centerline of the channel. Figure 5 on the 
other hand shows a quite opposite behavior, in 
case of contraction, there is a slight increase in the 
velocity near the walls with increasing 𝑅 and near the 
centerline the same decrease. It can also be seen 
that these two figures affirm the results obtained in 
Figures 2 and 3.

Figure 2. Effects of wall deformation rate on axial velocity 
in case of injection.

Figure 3. Effects of wall deformation rete on axial velocity 
in case of suction.

Figure 4. Effects of permeation Reynolds number  on 
axial velocity in case of expansion.

Figure 5. Effects of permeation Reynolds number on 
axial velocity in case of contraction.
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To support our analytical work future, we have solved 
Eq. (14) with Eq. (15) numerically by using the 
shooting method combined with fourth order Runge-
Kutta scheme. A comparison between the numerical 
solution and the purely analytical solution, obtained 
by VPM, is presented in Figures 6 and 7. The 
solution is given for the axial velocity for the cases 

of contraction combined with injection (Figure 6) and 
the expansion coupled with injection (Figure 7). It is 

evident from the figures that the solution obtained by 
VPM has a remarkable agreement with the numerical 
solution. Numerical values for the velocity profile are 
given in Tables 1 and 2.

The effects of varying 𝛼, on the normal pressure 
distribution (∆𝑝𝑛), are highlighted in the next two 
figures. The value of 𝑅 is taken to be −2 and 2, 
respectively. It can be observed for every level of 
suction or injection that the absolute change in ∆𝑝𝑛 
is the lowest near the central region. For suction, 
|∆𝑝𝑛| increases with increasing contraction as well as 
expansion. The most deviant behavior is observed 
near the walls of the channel. On the other hand, for 
injection, the pressure drop increases with increasing 
expansion; in the same case, it decreases with 
increasing contraction.

7. Conclusion
In this work we have examined an isothermal laminar 
flow of a viscous incompressible fluid in a rectangular 
domain bounded by two moving permeable walls. We 
have used Variation of Parameters Method (VPM) to 
approximate the solution for the equations governing 
the fluid flow. It is clear from our work that VPM can 
successfully be applied to highly nonlinear equations 
like the one we have and the results obtained 
are encouraging. The results bear a remarkable 
resemblance with the numerical solution as well as 
some of the already existing ones. The effects of 
different flow parameter on the flow behavior are 
shown with the help of graphs. The purpose of this 
study is to improve the work done by the previous 
researchers and it can be seen that we have applied 
such a technique that is less laborious and flexible to 
apply yet it gives quite accurate results. As the flow 
between the expanding/contracting porous walls is 
a basic model for understanding the complex fluid 
motion involved in bio-fluid mechanics and other 
branches of science, hence, this work can help to 
understand those flow behaviors in more accurate 
and flexible way.

Figure 6. Comparison between numerical and analytical 
solution (expansion/injection).

Figure 7. Comparison between numerical and analytical 
solution (contraction/injection).

y VPM Numerical [4] [5] %error(VPM) %error [4] %error [5]
0 1.557560 1.559473 1.536002 1.556324 0.122669 1.515606 0.212613

0.1 1.539048 1.540888 1.519377 1.538164 0.119411 1.396013 0.176781
0.2 1.483882 1.485503 1.469505 1.483935 0.109121 1.076941 0.105553
0.3 1.393173 1.394434 1.386445 1.394421 0.090430 0.572920 0.000932
0.4 1.268770 1.269540 1.270464 1.271006 0.06065 0.072782 0.115474
0.5 1.113244 1.113402 1.122275 1.115778 0.014190 0.796926 0.213400
0.6 0.929856 0.929302 0.943364 0.931656 0.059614 1.513178 0.253308
0.7 0.722502 0.721169 0.736373 0.722523 0.184838 2.108243 0.187750
0.8 0.495575 0.493513 0.505538 0.493322 0.417820 2.436612 0.038702
0.9 0.253585 0.251330 0.257149 0.250109 0.897226 2.315282 0.485815
1 0 0 0 0 0 0 0

Table 1. Comparison among numerical, VPM, Majdalani et al. [3] and Boutros et al. [5] solutions for axial velocity α=0.5 
and R=5.0.
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0.4 1.268770 1.269540 1.270464 1.271006 0.06065 0.072782 0.115474
0.5 1.113244 1.113402 1.122275 1.115778 0.014190 0.796926 0.213400
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