Abstract

Decreasing of Deuterium Concentration of Water: A Possible Tool in Diabetes Therapy

Background: Developing new diabetes care agent is of great importance and incites increasing demand for new products to improve the diabetes care. Several compounds have been made and investigated for this purpose. DDW is a type of water that has several health benefits and has been used for medicinal purposes in recent years. The aim of this study is to test the effect of removal of D2O on the glucose metabolism in sreptozotocin (STZ)-induced diabetic rat model and to explore the possible mechanism. Methods: Diabetes was induced by a single i.p., injection of 60 mg/kg body weight of STZ. After 2 weeks, animals were randomly distributed into several groups to test the effect of D2O (25-150 ppm) on glucose metabolism in diabetic animals with or without insulin treatment. The serum glucose and HbA1C parameters were tested and at the end of 8 weeks of intervention, the expression of membrane associated GLUT-4 mRNA detected by semi-quantitative RT-PCR. Results: Our results indicate that STZ treatment significantly increased serum glucose and HbA1C. Depletion of D2O has minor influence on the measured parameters in animals not received insulin. However the measured parameters were significantly lower in those animals received lower D2O containing drinking water and insulin treatment. The membrane associated GLUT-4 was significantly higher in these animals also. Conclusions: These data suggest that D2O depletion enhance insulin effect on GLUT-4 translocation and potentiate glucose uptake in diabetic animals, provided good evidence for its potential use in diabetes care.


Author(s):

Kamal Yavari, Mehrdad Gholamali, Fatemeh Yazdian



Abstract | Full-Text | PDF

Share this  Facebook  Twitter  LinkedIn  Google+

Recommended Conferences

Flyer image

Abstracted/Indexed in

  • Index Copernicus
  • Google Scholar
  • CiteFactor
  • Electronic Journals Library
  • Zoological Records
  • WorldCat
  • Proquest Summons
  • Publons
  • MIAR
  • Open Access Journals Search Engine (OAJSE)
  • Openaccessarticles.com